Undi95 commited on
Commit
97675a8
·
1 Parent(s): 79a7579

Upload folder using huggingface_hub

Browse files
Files changed (48) hide show
  1. README.md +79 -0
  2. adapter_config.json +28 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +3 -0
  5. checkpoint-1040/README.md +220 -0
  6. checkpoint-1040/adapter_config.json +28 -0
  7. checkpoint-1040/adapter_model.safetensors +3 -0
  8. checkpoint-1040/optimizer.pt +3 -0
  9. checkpoint-1040/rng_state.pth +3 -0
  10. checkpoint-1040/scheduler.pt +3 -0
  11. checkpoint-1040/trainer_state.json +0 -0
  12. checkpoint-1040/training_args.bin +3 -0
  13. checkpoint-1235/README.md +220 -0
  14. checkpoint-1235/adapter_config.json +28 -0
  15. checkpoint-1235/adapter_model.safetensors +3 -0
  16. checkpoint-1235/optimizer.pt +3 -0
  17. checkpoint-1235/rng_state.pth +3 -0
  18. checkpoint-1235/scheduler.pt +3 -0
  19. checkpoint-1235/trainer_state.json +0 -0
  20. checkpoint-1235/training_args.bin +3 -0
  21. checkpoint-1560/README.md +220 -0
  22. checkpoint-1560/adapter_config.json +28 -0
  23. checkpoint-1560/adapter_model.safetensors +3 -0
  24. checkpoint-1560/optimizer.pt +3 -0
  25. checkpoint-1560/rng_state.pth +3 -0
  26. checkpoint-1560/scheduler.pt +3 -0
  27. checkpoint-1560/trainer_state.json +0 -0
  28. checkpoint-1560/training_args.bin +3 -0
  29. checkpoint-715/README.md +220 -0
  30. checkpoint-715/adapter_config.json +28 -0
  31. checkpoint-715/adapter_model.safetensors +3 -0
  32. checkpoint-715/optimizer.pt +3 -0
  33. checkpoint-715/rng_state.pth +3 -0
  34. checkpoint-715/scheduler.pt +3 -0
  35. checkpoint-715/trainer_state.json +4382 -0
  36. checkpoint-715/training_args.bin +3 -0
  37. checkpoint-975/README.md +220 -0
  38. checkpoint-975/adapter_config.json +28 -0
  39. checkpoint-975/adapter_model.safetensors +3 -0
  40. checkpoint-975/optimizer.pt +3 -0
  41. checkpoint-975/rng_state.pth +3 -0
  42. checkpoint-975/scheduler.pt +3 -0
  43. checkpoint-975/trainer_state.json +0 -0
  44. checkpoint-975/training_args.bin +3 -0
  45. config.json +41 -0
  46. special_tokens_map.json +30 -0
  47. tokenizer.model +3 -0
  48. tokenizer_config.json +52 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: lora-out5
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
13
+ # lora-out5
14
+
15
+ This model was trained from scratch on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.1214
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 2.5e-07
37
+ - train_batch_size: 2
38
+ - eval_batch_size: 2
39
+ - seed: 42
40
+ - gradient_accumulation_steps: 2
41
+ - total_train_batch_size: 4
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: constant
44
+ - lr_scheduler_warmup_steps: 10
45
+ - num_epochs: 50
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 1.8362 | 0.03 | 1 | 1.7488 |
52
+ | 2.035 | 2.46 | 80 | 1.6462 |
53
+ | 1.5489 | 4.92 | 160 | 1.4901 |
54
+ | 1.4392 | 7.38 | 240 | 1.3567 |
55
+ | 1.2196 | 9.85 | 320 | 1.2475 |
56
+ | 1.3219 | 12.31 | 400 | 1.2089 |
57
+ | 1.2171 | 14.77 | 480 | 1.1870 |
58
+ | 1.1686 | 17.23 | 560 | 1.1730 |
59
+ | 1.1506 | 19.69 | 640 | 1.1615 |
60
+ | 1.1829 | 22.15 | 720 | 1.1513 |
61
+ | 1.267 | 24.62 | 800 | 1.1454 |
62
+ | 1.0857 | 27.08 | 880 | 1.1367 |
63
+ | 1.0795 | 29.54 | 960 | 1.1345 |
64
+ | 1.0453 | 32.0 | 1040 | 1.1317 |
65
+ | 1.2093 | 34.46 | 1120 | 1.1283 |
66
+ | 1.1442 | 36.92 | 1200 | 1.1253 |
67
+ | 0.966 | 39.38 | 1280 | 1.1239 |
68
+ | 0.9576 | 41.85 | 1360 | 1.1227 |
69
+ | 1.0146 | 44.31 | 1440 | 1.1222 |
70
+ | 1.0243 | 46.77 | 1520 | 1.1213 |
71
+ | 1.0192 | 49.23 | 1600 | 1.1214 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.36.0.dev0
77
+ - Pytorch 2.0.1+cu118
78
+ - Datasets 2.14.7
79
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./NeverSleep_Noromaid-13b-v0.1.1/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 512,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 256,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "down_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382cee0d188362b14c68ae8f7f7f6f2e5d20d32454cbdf6c9d18bb9fcee105da
3
+ size 4005763213
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
checkpoint-1040/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./NeverSleep_Noromaid-13b-v0.1.1/
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: True
208
+ - load_in_4bit: False
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: fp4
214
+ - bnb_4bit_use_double_quant: False
215
+ - bnb_4bit_compute_dtype: float32
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-1040/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./NeverSleep_Noromaid-13b-v0.1.1/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 512,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 256,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "down_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1040/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da1021028b5160d94237e78c538c60ab2c854155139b92f9783fb0d312e44fd1
3
+ size 4005637552
checkpoint-1040/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8a542d589628322238a136a80220ad7c47769d2b0fad2330409652db55b3640
3
+ size 2007352159
checkpoint-1040/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9417334df38c258286a4594dfa3d7dfdffe2c39a705cc56eec44e05720e955
3
+ size 14575
checkpoint-1040/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd3387b786bd67ff8ef15a508cf26abe46e62b045c1859dcd45566de3f3e0b06
3
+ size 627
checkpoint-1040/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1040/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c358b1c810a69ea433dd5d29f474567432f37c0574609fc5626a2db2ddb233f
3
+ size 4603
checkpoint-1235/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./NeverSleep_Noromaid-13b-v0.1.1/
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: True
208
+ - load_in_4bit: False
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: fp4
214
+ - bnb_4bit_use_double_quant: False
215
+ - bnb_4bit_compute_dtype: float32
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-1235/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./NeverSleep_Noromaid-13b-v0.1.1/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 512,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 256,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "down_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1235/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f44f2a5a9140a2df8bafb5586ec20ea5e9a355c3f12d232e49392c079c43e874
3
+ size 4005637552
checkpoint-1235/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c91e9347877d17b73ae0d9fa80f6c53e4ecbd62b740fe05a5bd03afbf1e6cd53
3
+ size 2007352159
checkpoint-1235/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:729c28c266482563f484f33c8e7eb00db90286466c41865f142a830b6df3226d
3
+ size 14575
checkpoint-1235/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92e633b173ea25f484d7ef6fe279b20e0169338dac453e8d07a631af20913f58
3
+ size 627
checkpoint-1235/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1235/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c358b1c810a69ea433dd5d29f474567432f37c0574609fc5626a2db2ddb233f
3
+ size 4603
checkpoint-1560/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./NeverSleep_Noromaid-13b-v0.1.1/
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: True
208
+ - load_in_4bit: False
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: fp4
214
+ - bnb_4bit_use_double_quant: False
215
+ - bnb_4bit_compute_dtype: float32
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-1560/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./NeverSleep_Noromaid-13b-v0.1.1/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 512,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 256,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "down_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1560/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f0502c483e75c09fd533c4f1697bf5769fe0849200ea28273bad8babf39ccbd
3
+ size 4005637552
checkpoint-1560/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26a53bbcecdab88ea1bf02db0a94adee284484a2fc575747628b76b2b4e4cc46
3
+ size 2007352159
checkpoint-1560/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2ac6b6c8327171662356e9a6c90f6ae3a377af50b66965ed0b535428c1ad78
3
+ size 14575
checkpoint-1560/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb0ec90ec619739fd803d81a9523646ae1ea00672786215d1ab11748e4efb751
3
+ size 627
checkpoint-1560/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1560/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c358b1c810a69ea433dd5d29f474567432f37c0574609fc5626a2db2ddb233f
3
+ size 4603
checkpoint-715/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./NeverSleep_Noromaid-13b-v0.1.1/
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: True
208
+ - load_in_4bit: False
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: fp4
214
+ - bnb_4bit_use_double_quant: False
215
+ - bnb_4bit_compute_dtype: float32
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-715/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./NeverSleep_Noromaid-13b-v0.1.1/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 512,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 256,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "down_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-715/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a303e67ed61b192363856ae74195a01bac862cbabc97f49cf8a68a6caa046a6
3
+ size 4005637552
checkpoint-715/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a81910ed3f202dd9ab952cbc1195d717b7da031b48622685ab87d6b25a17feed
3
+ size 2007352159
checkpoint-715/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee27af610ca0495321df5989114ee80ec471861c40bee8a93bcbc900e4f47494
3
+ size 14575
checkpoint-715/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b4c74a1098c53a19c72b5731e064082712032dd90a3f9654a724892bb076ff9
3
+ size 627
checkpoint-715/trainer_state.json ADDED
@@ -0,0 +1,4382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 22.0,
5
+ "eval_steps": 80,
6
+ "global_step": 715,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "learning_rate": 2.5e-07,
14
+ "loss": 1.8362,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "eval_loss": 1.7487908601760864,
20
+ "eval_runtime": 1.7201,
21
+ "eval_samples_per_second": 4.07,
22
+ "eval_steps_per_second": 2.326,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.06,
27
+ "learning_rate": 2.5e-07,
28
+ "loss": 1.7387,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.09,
33
+ "learning_rate": 2.5e-07,
34
+ "loss": 1.9194,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.12,
39
+ "learning_rate": 2.5e-07,
40
+ "loss": 1.8898,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.15,
45
+ "learning_rate": 2.5e-07,
46
+ "loss": 1.7892,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.18,
51
+ "learning_rate": 2.5e-07,
52
+ "loss": 1.9383,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.22,
57
+ "learning_rate": 2.5e-07,
58
+ "loss": 1.6433,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.25,
63
+ "learning_rate": 2.5e-07,
64
+ "loss": 1.9912,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.28,
69
+ "learning_rate": 2.5e-07,
70
+ "loss": 1.967,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.31,
75
+ "learning_rate": 2.5e-07,
76
+ "loss": 1.8385,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.34,
81
+ "learning_rate": 2.5e-07,
82
+ "loss": 2.0755,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.37,
87
+ "learning_rate": 2.5e-07,
88
+ "loss": 1.852,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.4,
93
+ "learning_rate": 2.5e-07,
94
+ "loss": 2.0098,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.43,
99
+ "learning_rate": 2.5e-07,
100
+ "loss": 1.8534,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.46,
105
+ "learning_rate": 2.5e-07,
106
+ "loss": 2.2001,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.49,
111
+ "learning_rate": 2.5e-07,
112
+ "loss": 1.7698,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.52,
117
+ "learning_rate": 2.5e-07,
118
+ "loss": 1.9215,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.55,
123
+ "learning_rate": 2.5e-07,
124
+ "loss": 1.8275,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.58,
129
+ "learning_rate": 2.5e-07,
130
+ "loss": 1.8526,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.62,
135
+ "learning_rate": 2.5e-07,
136
+ "loss": 1.8421,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.65,
141
+ "learning_rate": 2.5e-07,
142
+ "loss": 1.7406,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.68,
147
+ "learning_rate": 2.5e-07,
148
+ "loss": 1.8343,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.71,
153
+ "learning_rate": 2.5e-07,
154
+ "loss": 1.8616,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.74,
159
+ "learning_rate": 2.5e-07,
160
+ "loss": 1.6493,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.77,
165
+ "learning_rate": 2.5e-07,
166
+ "loss": 1.931,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.8,
171
+ "learning_rate": 2.5e-07,
172
+ "loss": 1.9538,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.83,
177
+ "learning_rate": 2.5e-07,
178
+ "loss": 2.013,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.86,
183
+ "learning_rate": 2.5e-07,
184
+ "loss": 2.0858,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.89,
189
+ "learning_rate": 2.5e-07,
190
+ "loss": 2.0456,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.92,
195
+ "learning_rate": 2.5e-07,
196
+ "loss": 1.7464,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.95,
201
+ "learning_rate": 2.5e-07,
202
+ "loss": 1.8876,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.98,
207
+ "learning_rate": 2.5e-07,
208
+ "loss": 1.7079,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 1.02,
213
+ "learning_rate": 2.5e-07,
214
+ "loss": 1.8358,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 1.05,
219
+ "learning_rate": 2.5e-07,
220
+ "loss": 2.0894,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 1.08,
225
+ "learning_rate": 2.5e-07,
226
+ "loss": 1.8563,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 1.11,
231
+ "learning_rate": 2.5e-07,
232
+ "loss": 1.893,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 1.14,
237
+ "learning_rate": 2.5e-07,
238
+ "loss": 1.9089,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 1.17,
243
+ "learning_rate": 2.5e-07,
244
+ "loss": 1.7537,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 1.2,
249
+ "learning_rate": 2.5e-07,
250
+ "loss": 1.8376,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 1.23,
255
+ "learning_rate": 2.5e-07,
256
+ "loss": 1.7036,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 1.26,
261
+ "learning_rate": 2.5e-07,
262
+ "loss": 1.8212,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 1.29,
267
+ "learning_rate": 2.5e-07,
268
+ "loss": 1.8071,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 1.32,
273
+ "learning_rate": 2.5e-07,
274
+ "loss": 1.8911,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 1.35,
279
+ "learning_rate": 2.5e-07,
280
+ "loss": 1.88,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 1.38,
285
+ "learning_rate": 2.5e-07,
286
+ "loss": 1.7136,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 1.42,
291
+ "learning_rate": 2.5e-07,
292
+ "loss": 1.6818,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 1.45,
297
+ "learning_rate": 2.5e-07,
298
+ "loss": 1.9645,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 1.48,
303
+ "learning_rate": 2.5e-07,
304
+ "loss": 1.9903,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 1.51,
309
+ "learning_rate": 2.5e-07,
310
+ "loss": 1.8368,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 1.54,
315
+ "learning_rate": 2.5e-07,
316
+ "loss": 1.7862,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 1.57,
321
+ "learning_rate": 2.5e-07,
322
+ "loss": 1.9217,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 1.6,
327
+ "learning_rate": 2.5e-07,
328
+ "loss": 1.8417,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 1.63,
333
+ "learning_rate": 2.5e-07,
334
+ "loss": 1.8408,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 1.66,
339
+ "learning_rate": 2.5e-07,
340
+ "loss": 1.8922,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 1.69,
345
+ "learning_rate": 2.5e-07,
346
+ "loss": 1.7651,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 1.72,
351
+ "learning_rate": 2.5e-07,
352
+ "loss": 1.7586,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 1.75,
357
+ "learning_rate": 2.5e-07,
358
+ "loss": 1.9452,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 1.78,
363
+ "learning_rate": 2.5e-07,
364
+ "loss": 1.7795,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 1.82,
369
+ "learning_rate": 2.5e-07,
370
+ "loss": 1.875,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 1.85,
375
+ "learning_rate": 2.5e-07,
376
+ "loss": 1.8503,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 1.88,
381
+ "learning_rate": 2.5e-07,
382
+ "loss": 1.7522,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 1.91,
387
+ "learning_rate": 2.5e-07,
388
+ "loss": 1.7527,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 1.94,
393
+ "learning_rate": 2.5e-07,
394
+ "loss": 1.8297,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 1.97,
399
+ "learning_rate": 2.5e-07,
400
+ "loss": 1.7751,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 2.0,
405
+ "learning_rate": 2.5e-07,
406
+ "loss": 1.9007,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 2.03,
411
+ "learning_rate": 2.5e-07,
412
+ "loss": 1.829,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 2.06,
417
+ "learning_rate": 2.5e-07,
418
+ "loss": 1.7726,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 2.09,
423
+ "learning_rate": 2.5e-07,
424
+ "loss": 1.8103,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 2.12,
429
+ "learning_rate": 2.5e-07,
430
+ "loss": 1.8264,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 2.15,
435
+ "learning_rate": 2.5e-07,
436
+ "loss": 1.7188,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 2.18,
441
+ "learning_rate": 2.5e-07,
442
+ "loss": 1.8933,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 2.22,
447
+ "learning_rate": 2.5e-07,
448
+ "loss": 1.6881,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 2.25,
453
+ "learning_rate": 2.5e-07,
454
+ "loss": 1.6726,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 2.28,
459
+ "learning_rate": 2.5e-07,
460
+ "loss": 1.8541,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 2.31,
465
+ "learning_rate": 2.5e-07,
466
+ "loss": 1.8042,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 2.34,
471
+ "learning_rate": 2.5e-07,
472
+ "loss": 1.7049,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 2.37,
477
+ "learning_rate": 2.5e-07,
478
+ "loss": 1.6737,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 2.4,
483
+ "learning_rate": 2.5e-07,
484
+ "loss": 1.6985,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 2.43,
489
+ "learning_rate": 2.5e-07,
490
+ "loss": 1.7261,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 2.46,
495
+ "learning_rate": 2.5e-07,
496
+ "loss": 2.035,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 2.46,
501
+ "eval_loss": 1.646209955215454,
502
+ "eval_runtime": 1.7493,
503
+ "eval_samples_per_second": 4.002,
504
+ "eval_steps_per_second": 2.287,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 2.49,
509
+ "learning_rate": 2.5e-07,
510
+ "loss": 1.7559,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 2.52,
515
+ "learning_rate": 2.5e-07,
516
+ "loss": 1.6864,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 2.55,
521
+ "learning_rate": 2.5e-07,
522
+ "loss": 1.8974,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 2.58,
527
+ "learning_rate": 2.5e-07,
528
+ "loss": 1.822,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 2.62,
533
+ "learning_rate": 2.5e-07,
534
+ "loss": 1.6783,
535
+ "step": 85
536
+ },
537
+ {
538
+ "epoch": 2.65,
539
+ "learning_rate": 2.5e-07,
540
+ "loss": 1.8375,
541
+ "step": 86
542
+ },
543
+ {
544
+ "epoch": 2.68,
545
+ "learning_rate": 2.5e-07,
546
+ "loss": 1.7302,
547
+ "step": 87
548
+ },
549
+ {
550
+ "epoch": 2.71,
551
+ "learning_rate": 2.5e-07,
552
+ "loss": 1.7164,
553
+ "step": 88
554
+ },
555
+ {
556
+ "epoch": 2.74,
557
+ "learning_rate": 2.5e-07,
558
+ "loss": 1.6118,
559
+ "step": 89
560
+ },
561
+ {
562
+ "epoch": 2.77,
563
+ "learning_rate": 2.5e-07,
564
+ "loss": 1.7528,
565
+ "step": 90
566
+ },
567
+ {
568
+ "epoch": 2.8,
569
+ "learning_rate": 2.5e-07,
570
+ "loss": 1.9012,
571
+ "step": 91
572
+ },
573
+ {
574
+ "epoch": 2.83,
575
+ "learning_rate": 2.5e-07,
576
+ "loss": 1.6869,
577
+ "step": 92
578
+ },
579
+ {
580
+ "epoch": 2.86,
581
+ "learning_rate": 2.5e-07,
582
+ "loss": 1.7648,
583
+ "step": 93
584
+ },
585
+ {
586
+ "epoch": 2.89,
587
+ "learning_rate": 2.5e-07,
588
+ "loss": 1.6151,
589
+ "step": 94
590
+ },
591
+ {
592
+ "epoch": 2.92,
593
+ "learning_rate": 2.5e-07,
594
+ "loss": 1.7853,
595
+ "step": 95
596
+ },
597
+ {
598
+ "epoch": 2.95,
599
+ "learning_rate": 2.5e-07,
600
+ "loss": 1.7481,
601
+ "step": 96
602
+ },
603
+ {
604
+ "epoch": 2.98,
605
+ "learning_rate": 2.5e-07,
606
+ "loss": 1.7218,
607
+ "step": 97
608
+ },
609
+ {
610
+ "epoch": 3.02,
611
+ "learning_rate": 2.5e-07,
612
+ "loss": 1.8767,
613
+ "step": 98
614
+ },
615
+ {
616
+ "epoch": 3.05,
617
+ "learning_rate": 2.5e-07,
618
+ "loss": 1.7954,
619
+ "step": 99
620
+ },
621
+ {
622
+ "epoch": 3.08,
623
+ "learning_rate": 2.5e-07,
624
+ "loss": 1.6822,
625
+ "step": 100
626
+ },
627
+ {
628
+ "epoch": 3.11,
629
+ "learning_rate": 2.5e-07,
630
+ "loss": 1.821,
631
+ "step": 101
632
+ },
633
+ {
634
+ "epoch": 3.14,
635
+ "learning_rate": 2.5e-07,
636
+ "loss": 1.6984,
637
+ "step": 102
638
+ },
639
+ {
640
+ "epoch": 3.17,
641
+ "learning_rate": 2.5e-07,
642
+ "loss": 1.7225,
643
+ "step": 103
644
+ },
645
+ {
646
+ "epoch": 3.2,
647
+ "learning_rate": 2.5e-07,
648
+ "loss": 1.6312,
649
+ "step": 104
650
+ },
651
+ {
652
+ "epoch": 3.23,
653
+ "learning_rate": 2.5e-07,
654
+ "loss": 1.7467,
655
+ "step": 105
656
+ },
657
+ {
658
+ "epoch": 3.26,
659
+ "learning_rate": 2.5e-07,
660
+ "loss": 1.679,
661
+ "step": 106
662
+ },
663
+ {
664
+ "epoch": 3.29,
665
+ "learning_rate": 2.5e-07,
666
+ "loss": 1.791,
667
+ "step": 107
668
+ },
669
+ {
670
+ "epoch": 3.32,
671
+ "learning_rate": 2.5e-07,
672
+ "loss": 1.7233,
673
+ "step": 108
674
+ },
675
+ {
676
+ "epoch": 3.35,
677
+ "learning_rate": 2.5e-07,
678
+ "loss": 1.8198,
679
+ "step": 109
680
+ },
681
+ {
682
+ "epoch": 3.38,
683
+ "learning_rate": 2.5e-07,
684
+ "loss": 1.6536,
685
+ "step": 110
686
+ },
687
+ {
688
+ "epoch": 3.42,
689
+ "learning_rate": 2.5e-07,
690
+ "loss": 1.6672,
691
+ "step": 111
692
+ },
693
+ {
694
+ "epoch": 3.45,
695
+ "learning_rate": 2.5e-07,
696
+ "loss": 1.8259,
697
+ "step": 112
698
+ },
699
+ {
700
+ "epoch": 3.48,
701
+ "learning_rate": 2.5e-07,
702
+ "loss": 1.7671,
703
+ "step": 113
704
+ },
705
+ {
706
+ "epoch": 3.51,
707
+ "learning_rate": 2.5e-07,
708
+ "loss": 1.5717,
709
+ "step": 114
710
+ },
711
+ {
712
+ "epoch": 3.54,
713
+ "learning_rate": 2.5e-07,
714
+ "loss": 1.7491,
715
+ "step": 115
716
+ },
717
+ {
718
+ "epoch": 3.57,
719
+ "learning_rate": 2.5e-07,
720
+ "loss": 1.4921,
721
+ "step": 116
722
+ },
723
+ {
724
+ "epoch": 3.6,
725
+ "learning_rate": 2.5e-07,
726
+ "loss": 1.7512,
727
+ "step": 117
728
+ },
729
+ {
730
+ "epoch": 3.63,
731
+ "learning_rate": 2.5e-07,
732
+ "loss": 1.5921,
733
+ "step": 118
734
+ },
735
+ {
736
+ "epoch": 3.66,
737
+ "learning_rate": 2.5e-07,
738
+ "loss": 1.6179,
739
+ "step": 119
740
+ },
741
+ {
742
+ "epoch": 3.69,
743
+ "learning_rate": 2.5e-07,
744
+ "loss": 1.7484,
745
+ "step": 120
746
+ },
747
+ {
748
+ "epoch": 3.72,
749
+ "learning_rate": 2.5e-07,
750
+ "loss": 1.6551,
751
+ "step": 121
752
+ },
753
+ {
754
+ "epoch": 3.75,
755
+ "learning_rate": 2.5e-07,
756
+ "loss": 1.6753,
757
+ "step": 122
758
+ },
759
+ {
760
+ "epoch": 3.78,
761
+ "learning_rate": 2.5e-07,
762
+ "loss": 1.816,
763
+ "step": 123
764
+ },
765
+ {
766
+ "epoch": 3.82,
767
+ "learning_rate": 2.5e-07,
768
+ "loss": 1.7982,
769
+ "step": 124
770
+ },
771
+ {
772
+ "epoch": 3.85,
773
+ "learning_rate": 2.5e-07,
774
+ "loss": 1.5347,
775
+ "step": 125
776
+ },
777
+ {
778
+ "epoch": 3.88,
779
+ "learning_rate": 2.5e-07,
780
+ "loss": 1.6895,
781
+ "step": 126
782
+ },
783
+ {
784
+ "epoch": 3.91,
785
+ "learning_rate": 2.5e-07,
786
+ "loss": 1.6968,
787
+ "step": 127
788
+ },
789
+ {
790
+ "epoch": 3.94,
791
+ "learning_rate": 2.5e-07,
792
+ "loss": 1.6039,
793
+ "step": 128
794
+ },
795
+ {
796
+ "epoch": 3.97,
797
+ "learning_rate": 2.5e-07,
798
+ "loss": 1.6148,
799
+ "step": 129
800
+ },
801
+ {
802
+ "epoch": 4.0,
803
+ "learning_rate": 2.5e-07,
804
+ "loss": 1.6244,
805
+ "step": 130
806
+ },
807
+ {
808
+ "epoch": 4.03,
809
+ "learning_rate": 2.5e-07,
810
+ "loss": 1.5743,
811
+ "step": 131
812
+ },
813
+ {
814
+ "epoch": 4.06,
815
+ "learning_rate": 2.5e-07,
816
+ "loss": 1.5876,
817
+ "step": 132
818
+ },
819
+ {
820
+ "epoch": 4.09,
821
+ "learning_rate": 2.5e-07,
822
+ "loss": 1.7865,
823
+ "step": 133
824
+ },
825
+ {
826
+ "epoch": 4.12,
827
+ "learning_rate": 2.5e-07,
828
+ "loss": 1.731,
829
+ "step": 134
830
+ },
831
+ {
832
+ "epoch": 4.15,
833
+ "learning_rate": 2.5e-07,
834
+ "loss": 1.6661,
835
+ "step": 135
836
+ },
837
+ {
838
+ "epoch": 4.18,
839
+ "learning_rate": 2.5e-07,
840
+ "loss": 1.6231,
841
+ "step": 136
842
+ },
843
+ {
844
+ "epoch": 4.22,
845
+ "learning_rate": 2.5e-07,
846
+ "loss": 1.5479,
847
+ "step": 137
848
+ },
849
+ {
850
+ "epoch": 4.25,
851
+ "learning_rate": 2.5e-07,
852
+ "loss": 1.7758,
853
+ "step": 138
854
+ },
855
+ {
856
+ "epoch": 4.28,
857
+ "learning_rate": 2.5e-07,
858
+ "loss": 1.6865,
859
+ "step": 139
860
+ },
861
+ {
862
+ "epoch": 4.31,
863
+ "learning_rate": 2.5e-07,
864
+ "loss": 1.6355,
865
+ "step": 140
866
+ },
867
+ {
868
+ "epoch": 4.34,
869
+ "learning_rate": 2.5e-07,
870
+ "loss": 1.6922,
871
+ "step": 141
872
+ },
873
+ {
874
+ "epoch": 4.37,
875
+ "learning_rate": 2.5e-07,
876
+ "loss": 1.5235,
877
+ "step": 142
878
+ },
879
+ {
880
+ "epoch": 4.4,
881
+ "learning_rate": 2.5e-07,
882
+ "loss": 1.6388,
883
+ "step": 143
884
+ },
885
+ {
886
+ "epoch": 4.43,
887
+ "learning_rate": 2.5e-07,
888
+ "loss": 1.536,
889
+ "step": 144
890
+ },
891
+ {
892
+ "epoch": 4.46,
893
+ "learning_rate": 2.5e-07,
894
+ "loss": 1.6105,
895
+ "step": 145
896
+ },
897
+ {
898
+ "epoch": 4.49,
899
+ "learning_rate": 2.5e-07,
900
+ "loss": 1.6795,
901
+ "step": 146
902
+ },
903
+ {
904
+ "epoch": 4.52,
905
+ "learning_rate": 2.5e-07,
906
+ "loss": 1.5493,
907
+ "step": 147
908
+ },
909
+ {
910
+ "epoch": 4.55,
911
+ "learning_rate": 2.5e-07,
912
+ "loss": 1.6987,
913
+ "step": 148
914
+ },
915
+ {
916
+ "epoch": 4.58,
917
+ "learning_rate": 2.5e-07,
918
+ "loss": 1.529,
919
+ "step": 149
920
+ },
921
+ {
922
+ "epoch": 4.62,
923
+ "learning_rate": 2.5e-07,
924
+ "loss": 1.5458,
925
+ "step": 150
926
+ },
927
+ {
928
+ "epoch": 4.65,
929
+ "learning_rate": 2.5e-07,
930
+ "loss": 1.5496,
931
+ "step": 151
932
+ },
933
+ {
934
+ "epoch": 4.68,
935
+ "learning_rate": 2.5e-07,
936
+ "loss": 1.6442,
937
+ "step": 152
938
+ },
939
+ {
940
+ "epoch": 4.71,
941
+ "learning_rate": 2.5e-07,
942
+ "loss": 1.727,
943
+ "step": 153
944
+ },
945
+ {
946
+ "epoch": 4.74,
947
+ "learning_rate": 2.5e-07,
948
+ "loss": 1.6884,
949
+ "step": 154
950
+ },
951
+ {
952
+ "epoch": 4.77,
953
+ "learning_rate": 2.5e-07,
954
+ "loss": 1.5979,
955
+ "step": 155
956
+ },
957
+ {
958
+ "epoch": 4.8,
959
+ "learning_rate": 2.5e-07,
960
+ "loss": 1.5635,
961
+ "step": 156
962
+ },
963
+ {
964
+ "epoch": 4.83,
965
+ "learning_rate": 2.5e-07,
966
+ "loss": 1.805,
967
+ "step": 157
968
+ },
969
+ {
970
+ "epoch": 4.86,
971
+ "learning_rate": 2.5e-07,
972
+ "loss": 1.565,
973
+ "step": 158
974
+ },
975
+ {
976
+ "epoch": 4.89,
977
+ "learning_rate": 2.5e-07,
978
+ "loss": 1.5836,
979
+ "step": 159
980
+ },
981
+ {
982
+ "epoch": 4.92,
983
+ "learning_rate": 2.5e-07,
984
+ "loss": 1.5489,
985
+ "step": 160
986
+ },
987
+ {
988
+ "epoch": 4.92,
989
+ "eval_loss": 1.490054965019226,
990
+ "eval_runtime": 1.7397,
991
+ "eval_samples_per_second": 4.024,
992
+ "eval_steps_per_second": 2.299,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 4.95,
997
+ "learning_rate": 2.5e-07,
998
+ "loss": 1.6744,
999
+ "step": 161
1000
+ },
1001
+ {
1002
+ "epoch": 4.98,
1003
+ "learning_rate": 2.5e-07,
1004
+ "loss": 1.5578,
1005
+ "step": 162
1006
+ },
1007
+ {
1008
+ "epoch": 5.02,
1009
+ "learning_rate": 2.5e-07,
1010
+ "loss": 1.5033,
1011
+ "step": 163
1012
+ },
1013
+ {
1014
+ "epoch": 5.05,
1015
+ "learning_rate": 2.5e-07,
1016
+ "loss": 1.701,
1017
+ "step": 164
1018
+ },
1019
+ {
1020
+ "epoch": 5.08,
1021
+ "learning_rate": 2.5e-07,
1022
+ "loss": 1.5297,
1023
+ "step": 165
1024
+ },
1025
+ {
1026
+ "epoch": 5.11,
1027
+ "learning_rate": 2.5e-07,
1028
+ "loss": 1.5086,
1029
+ "step": 166
1030
+ },
1031
+ {
1032
+ "epoch": 5.14,
1033
+ "learning_rate": 2.5e-07,
1034
+ "loss": 1.5426,
1035
+ "step": 167
1036
+ },
1037
+ {
1038
+ "epoch": 5.17,
1039
+ "learning_rate": 2.5e-07,
1040
+ "loss": 1.5224,
1041
+ "step": 168
1042
+ },
1043
+ {
1044
+ "epoch": 5.2,
1045
+ "learning_rate": 2.5e-07,
1046
+ "loss": 1.4174,
1047
+ "step": 169
1048
+ },
1049
+ {
1050
+ "epoch": 5.23,
1051
+ "learning_rate": 2.5e-07,
1052
+ "loss": 1.5665,
1053
+ "step": 170
1054
+ },
1055
+ {
1056
+ "epoch": 5.26,
1057
+ "learning_rate": 2.5e-07,
1058
+ "loss": 1.5093,
1059
+ "step": 171
1060
+ },
1061
+ {
1062
+ "epoch": 5.29,
1063
+ "learning_rate": 2.5e-07,
1064
+ "loss": 1.4894,
1065
+ "step": 172
1066
+ },
1067
+ {
1068
+ "epoch": 5.32,
1069
+ "learning_rate": 2.5e-07,
1070
+ "loss": 1.7075,
1071
+ "step": 173
1072
+ },
1073
+ {
1074
+ "epoch": 5.35,
1075
+ "learning_rate": 2.5e-07,
1076
+ "loss": 1.5987,
1077
+ "step": 174
1078
+ },
1079
+ {
1080
+ "epoch": 5.38,
1081
+ "learning_rate": 2.5e-07,
1082
+ "loss": 1.5064,
1083
+ "step": 175
1084
+ },
1085
+ {
1086
+ "epoch": 5.42,
1087
+ "learning_rate": 2.5e-07,
1088
+ "loss": 1.5896,
1089
+ "step": 176
1090
+ },
1091
+ {
1092
+ "epoch": 5.45,
1093
+ "learning_rate": 2.5e-07,
1094
+ "loss": 1.5435,
1095
+ "step": 177
1096
+ },
1097
+ {
1098
+ "epoch": 5.48,
1099
+ "learning_rate": 2.5e-07,
1100
+ "loss": 1.5764,
1101
+ "step": 178
1102
+ },
1103
+ {
1104
+ "epoch": 5.51,
1105
+ "learning_rate": 2.5e-07,
1106
+ "loss": 1.6604,
1107
+ "step": 179
1108
+ },
1109
+ {
1110
+ "epoch": 5.54,
1111
+ "learning_rate": 2.5e-07,
1112
+ "loss": 1.6184,
1113
+ "step": 180
1114
+ },
1115
+ {
1116
+ "epoch": 5.57,
1117
+ "learning_rate": 2.5e-07,
1118
+ "loss": 1.6953,
1119
+ "step": 181
1120
+ },
1121
+ {
1122
+ "epoch": 5.6,
1123
+ "learning_rate": 2.5e-07,
1124
+ "loss": 1.5764,
1125
+ "step": 182
1126
+ },
1127
+ {
1128
+ "epoch": 5.63,
1129
+ "learning_rate": 2.5e-07,
1130
+ "loss": 1.4756,
1131
+ "step": 183
1132
+ },
1133
+ {
1134
+ "epoch": 5.66,
1135
+ "learning_rate": 2.5e-07,
1136
+ "loss": 1.6062,
1137
+ "step": 184
1138
+ },
1139
+ {
1140
+ "epoch": 5.69,
1141
+ "learning_rate": 2.5e-07,
1142
+ "loss": 1.5978,
1143
+ "step": 185
1144
+ },
1145
+ {
1146
+ "epoch": 5.72,
1147
+ "learning_rate": 2.5e-07,
1148
+ "loss": 1.4222,
1149
+ "step": 186
1150
+ },
1151
+ {
1152
+ "epoch": 5.75,
1153
+ "learning_rate": 2.5e-07,
1154
+ "loss": 1.5142,
1155
+ "step": 187
1156
+ },
1157
+ {
1158
+ "epoch": 5.78,
1159
+ "learning_rate": 2.5e-07,
1160
+ "loss": 1.4466,
1161
+ "step": 188
1162
+ },
1163
+ {
1164
+ "epoch": 5.82,
1165
+ "learning_rate": 2.5e-07,
1166
+ "loss": 1.5513,
1167
+ "step": 189
1168
+ },
1169
+ {
1170
+ "epoch": 5.85,
1171
+ "learning_rate": 2.5e-07,
1172
+ "loss": 1.4656,
1173
+ "step": 190
1174
+ },
1175
+ {
1176
+ "epoch": 5.88,
1177
+ "learning_rate": 2.5e-07,
1178
+ "loss": 1.5972,
1179
+ "step": 191
1180
+ },
1181
+ {
1182
+ "epoch": 5.91,
1183
+ "learning_rate": 2.5e-07,
1184
+ "loss": 1.4809,
1185
+ "step": 192
1186
+ },
1187
+ {
1188
+ "epoch": 5.94,
1189
+ "learning_rate": 2.5e-07,
1190
+ "loss": 1.6644,
1191
+ "step": 193
1192
+ },
1193
+ {
1194
+ "epoch": 5.97,
1195
+ "learning_rate": 2.5e-07,
1196
+ "loss": 1.5554,
1197
+ "step": 194
1198
+ },
1199
+ {
1200
+ "epoch": 6.0,
1201
+ "learning_rate": 2.5e-07,
1202
+ "loss": 1.5099,
1203
+ "step": 195
1204
+ },
1205
+ {
1206
+ "epoch": 6.03,
1207
+ "learning_rate": 2.5e-07,
1208
+ "loss": 1.5775,
1209
+ "step": 196
1210
+ },
1211
+ {
1212
+ "epoch": 6.06,
1213
+ "learning_rate": 2.5e-07,
1214
+ "loss": 1.4642,
1215
+ "step": 197
1216
+ },
1217
+ {
1218
+ "epoch": 6.09,
1219
+ "learning_rate": 2.5e-07,
1220
+ "loss": 1.4549,
1221
+ "step": 198
1222
+ },
1223
+ {
1224
+ "epoch": 6.12,
1225
+ "learning_rate": 2.5e-07,
1226
+ "loss": 1.4262,
1227
+ "step": 199
1228
+ },
1229
+ {
1230
+ "epoch": 6.15,
1231
+ "learning_rate": 2.5e-07,
1232
+ "loss": 1.3087,
1233
+ "step": 200
1234
+ },
1235
+ {
1236
+ "epoch": 6.18,
1237
+ "learning_rate": 2.5e-07,
1238
+ "loss": 1.4069,
1239
+ "step": 201
1240
+ },
1241
+ {
1242
+ "epoch": 6.22,
1243
+ "learning_rate": 2.5e-07,
1244
+ "loss": 1.5301,
1245
+ "step": 202
1246
+ },
1247
+ {
1248
+ "epoch": 6.25,
1249
+ "learning_rate": 2.5e-07,
1250
+ "loss": 1.4505,
1251
+ "step": 203
1252
+ },
1253
+ {
1254
+ "epoch": 6.28,
1255
+ "learning_rate": 2.5e-07,
1256
+ "loss": 1.5708,
1257
+ "step": 204
1258
+ },
1259
+ {
1260
+ "epoch": 6.31,
1261
+ "learning_rate": 2.5e-07,
1262
+ "loss": 1.5237,
1263
+ "step": 205
1264
+ },
1265
+ {
1266
+ "epoch": 6.34,
1267
+ "learning_rate": 2.5e-07,
1268
+ "loss": 1.6189,
1269
+ "step": 206
1270
+ },
1271
+ {
1272
+ "epoch": 6.37,
1273
+ "learning_rate": 2.5e-07,
1274
+ "loss": 1.3563,
1275
+ "step": 207
1276
+ },
1277
+ {
1278
+ "epoch": 6.4,
1279
+ "learning_rate": 2.5e-07,
1280
+ "loss": 1.6897,
1281
+ "step": 208
1282
+ },
1283
+ {
1284
+ "epoch": 6.43,
1285
+ "learning_rate": 2.5e-07,
1286
+ "loss": 1.4593,
1287
+ "step": 209
1288
+ },
1289
+ {
1290
+ "epoch": 6.46,
1291
+ "learning_rate": 2.5e-07,
1292
+ "loss": 1.6024,
1293
+ "step": 210
1294
+ },
1295
+ {
1296
+ "epoch": 6.49,
1297
+ "learning_rate": 2.5e-07,
1298
+ "loss": 1.4543,
1299
+ "step": 211
1300
+ },
1301
+ {
1302
+ "epoch": 6.52,
1303
+ "learning_rate": 2.5e-07,
1304
+ "loss": 1.5193,
1305
+ "step": 212
1306
+ },
1307
+ {
1308
+ "epoch": 6.55,
1309
+ "learning_rate": 2.5e-07,
1310
+ "loss": 1.3936,
1311
+ "step": 213
1312
+ },
1313
+ {
1314
+ "epoch": 6.58,
1315
+ "learning_rate": 2.5e-07,
1316
+ "loss": 1.5552,
1317
+ "step": 214
1318
+ },
1319
+ {
1320
+ "epoch": 6.62,
1321
+ "learning_rate": 2.5e-07,
1322
+ "loss": 1.453,
1323
+ "step": 215
1324
+ },
1325
+ {
1326
+ "epoch": 6.65,
1327
+ "learning_rate": 2.5e-07,
1328
+ "loss": 1.4554,
1329
+ "step": 216
1330
+ },
1331
+ {
1332
+ "epoch": 6.68,
1333
+ "learning_rate": 2.5e-07,
1334
+ "loss": 1.6442,
1335
+ "step": 217
1336
+ },
1337
+ {
1338
+ "epoch": 6.71,
1339
+ "learning_rate": 2.5e-07,
1340
+ "loss": 1.439,
1341
+ "step": 218
1342
+ },
1343
+ {
1344
+ "epoch": 6.74,
1345
+ "learning_rate": 2.5e-07,
1346
+ "loss": 1.4309,
1347
+ "step": 219
1348
+ },
1349
+ {
1350
+ "epoch": 6.77,
1351
+ "learning_rate": 2.5e-07,
1352
+ "loss": 1.4857,
1353
+ "step": 220
1354
+ },
1355
+ {
1356
+ "epoch": 6.8,
1357
+ "learning_rate": 2.5e-07,
1358
+ "loss": 1.5154,
1359
+ "step": 221
1360
+ },
1361
+ {
1362
+ "epoch": 6.83,
1363
+ "learning_rate": 2.5e-07,
1364
+ "loss": 1.3941,
1365
+ "step": 222
1366
+ },
1367
+ {
1368
+ "epoch": 6.86,
1369
+ "learning_rate": 2.5e-07,
1370
+ "loss": 1.5596,
1371
+ "step": 223
1372
+ },
1373
+ {
1374
+ "epoch": 6.89,
1375
+ "learning_rate": 2.5e-07,
1376
+ "loss": 1.4859,
1377
+ "step": 224
1378
+ },
1379
+ {
1380
+ "epoch": 6.92,
1381
+ "learning_rate": 2.5e-07,
1382
+ "loss": 1.4801,
1383
+ "step": 225
1384
+ },
1385
+ {
1386
+ "epoch": 6.95,
1387
+ "learning_rate": 2.5e-07,
1388
+ "loss": 1.5035,
1389
+ "step": 226
1390
+ },
1391
+ {
1392
+ "epoch": 6.98,
1393
+ "learning_rate": 2.5e-07,
1394
+ "loss": 1.6068,
1395
+ "step": 227
1396
+ },
1397
+ {
1398
+ "epoch": 7.02,
1399
+ "learning_rate": 2.5e-07,
1400
+ "loss": 1.4447,
1401
+ "step": 228
1402
+ },
1403
+ {
1404
+ "epoch": 7.05,
1405
+ "learning_rate": 2.5e-07,
1406
+ "loss": 1.5094,
1407
+ "step": 229
1408
+ },
1409
+ {
1410
+ "epoch": 7.08,
1411
+ "learning_rate": 2.5e-07,
1412
+ "loss": 1.5474,
1413
+ "step": 230
1414
+ },
1415
+ {
1416
+ "epoch": 7.11,
1417
+ "learning_rate": 2.5e-07,
1418
+ "loss": 1.4545,
1419
+ "step": 231
1420
+ },
1421
+ {
1422
+ "epoch": 7.14,
1423
+ "learning_rate": 2.5e-07,
1424
+ "loss": 1.4672,
1425
+ "step": 232
1426
+ },
1427
+ {
1428
+ "epoch": 7.17,
1429
+ "learning_rate": 2.5e-07,
1430
+ "loss": 1.6396,
1431
+ "step": 233
1432
+ },
1433
+ {
1434
+ "epoch": 7.2,
1435
+ "learning_rate": 2.5e-07,
1436
+ "loss": 1.374,
1437
+ "step": 234
1438
+ },
1439
+ {
1440
+ "epoch": 7.23,
1441
+ "learning_rate": 2.5e-07,
1442
+ "loss": 1.4521,
1443
+ "step": 235
1444
+ },
1445
+ {
1446
+ "epoch": 7.26,
1447
+ "learning_rate": 2.5e-07,
1448
+ "loss": 1.2984,
1449
+ "step": 236
1450
+ },
1451
+ {
1452
+ "epoch": 7.29,
1453
+ "learning_rate": 2.5e-07,
1454
+ "loss": 1.4511,
1455
+ "step": 237
1456
+ },
1457
+ {
1458
+ "epoch": 7.32,
1459
+ "learning_rate": 2.5e-07,
1460
+ "loss": 1.405,
1461
+ "step": 238
1462
+ },
1463
+ {
1464
+ "epoch": 7.35,
1465
+ "learning_rate": 2.5e-07,
1466
+ "loss": 1.296,
1467
+ "step": 239
1468
+ },
1469
+ {
1470
+ "epoch": 7.38,
1471
+ "learning_rate": 2.5e-07,
1472
+ "loss": 1.4392,
1473
+ "step": 240
1474
+ },
1475
+ {
1476
+ "epoch": 7.38,
1477
+ "eval_loss": 1.3567150831222534,
1478
+ "eval_runtime": 1.7364,
1479
+ "eval_samples_per_second": 4.031,
1480
+ "eval_steps_per_second": 2.304,
1481
+ "step": 240
1482
+ },
1483
+ {
1484
+ "epoch": 7.42,
1485
+ "learning_rate": 2.5e-07,
1486
+ "loss": 1.5595,
1487
+ "step": 241
1488
+ },
1489
+ {
1490
+ "epoch": 7.45,
1491
+ "learning_rate": 2.5e-07,
1492
+ "loss": 1.5671,
1493
+ "step": 242
1494
+ },
1495
+ {
1496
+ "epoch": 7.48,
1497
+ "learning_rate": 2.5e-07,
1498
+ "loss": 1.4832,
1499
+ "step": 243
1500
+ },
1501
+ {
1502
+ "epoch": 7.51,
1503
+ "learning_rate": 2.5e-07,
1504
+ "loss": 1.4415,
1505
+ "step": 244
1506
+ },
1507
+ {
1508
+ "epoch": 7.54,
1509
+ "learning_rate": 2.5e-07,
1510
+ "loss": 1.4649,
1511
+ "step": 245
1512
+ },
1513
+ {
1514
+ "epoch": 7.57,
1515
+ "learning_rate": 2.5e-07,
1516
+ "loss": 1.5053,
1517
+ "step": 246
1518
+ },
1519
+ {
1520
+ "epoch": 7.6,
1521
+ "learning_rate": 2.5e-07,
1522
+ "loss": 1.5084,
1523
+ "step": 247
1524
+ },
1525
+ {
1526
+ "epoch": 7.63,
1527
+ "learning_rate": 2.5e-07,
1528
+ "loss": 1.4543,
1529
+ "step": 248
1530
+ },
1531
+ {
1532
+ "epoch": 7.66,
1533
+ "learning_rate": 2.5e-07,
1534
+ "loss": 1.3008,
1535
+ "step": 249
1536
+ },
1537
+ {
1538
+ "epoch": 7.69,
1539
+ "learning_rate": 2.5e-07,
1540
+ "loss": 1.324,
1541
+ "step": 250
1542
+ },
1543
+ {
1544
+ "epoch": 7.72,
1545
+ "learning_rate": 2.5e-07,
1546
+ "loss": 1.5586,
1547
+ "step": 251
1548
+ },
1549
+ {
1550
+ "epoch": 7.75,
1551
+ "learning_rate": 2.5e-07,
1552
+ "loss": 1.4245,
1553
+ "step": 252
1554
+ },
1555
+ {
1556
+ "epoch": 7.78,
1557
+ "learning_rate": 2.5e-07,
1558
+ "loss": 1.4361,
1559
+ "step": 253
1560
+ },
1561
+ {
1562
+ "epoch": 7.82,
1563
+ "learning_rate": 2.5e-07,
1564
+ "loss": 1.4301,
1565
+ "step": 254
1566
+ },
1567
+ {
1568
+ "epoch": 7.85,
1569
+ "learning_rate": 2.5e-07,
1570
+ "loss": 1.5183,
1571
+ "step": 255
1572
+ },
1573
+ {
1574
+ "epoch": 7.88,
1575
+ "learning_rate": 2.5e-07,
1576
+ "loss": 1.46,
1577
+ "step": 256
1578
+ },
1579
+ {
1580
+ "epoch": 7.91,
1581
+ "learning_rate": 2.5e-07,
1582
+ "loss": 1.2602,
1583
+ "step": 257
1584
+ },
1585
+ {
1586
+ "epoch": 7.94,
1587
+ "learning_rate": 2.5e-07,
1588
+ "loss": 1.358,
1589
+ "step": 258
1590
+ },
1591
+ {
1592
+ "epoch": 7.97,
1593
+ "learning_rate": 2.5e-07,
1594
+ "loss": 1.2598,
1595
+ "step": 259
1596
+ },
1597
+ {
1598
+ "epoch": 8.0,
1599
+ "learning_rate": 2.5e-07,
1600
+ "loss": 1.3058,
1601
+ "step": 260
1602
+ },
1603
+ {
1604
+ "epoch": 8.03,
1605
+ "learning_rate": 2.5e-07,
1606
+ "loss": 1.4428,
1607
+ "step": 261
1608
+ },
1609
+ {
1610
+ "epoch": 8.06,
1611
+ "learning_rate": 2.5e-07,
1612
+ "loss": 1.4506,
1613
+ "step": 262
1614
+ },
1615
+ {
1616
+ "epoch": 8.09,
1617
+ "learning_rate": 2.5e-07,
1618
+ "loss": 1.4627,
1619
+ "step": 263
1620
+ },
1621
+ {
1622
+ "epoch": 8.12,
1623
+ "learning_rate": 2.5e-07,
1624
+ "loss": 1.4584,
1625
+ "step": 264
1626
+ },
1627
+ {
1628
+ "epoch": 8.15,
1629
+ "learning_rate": 2.5e-07,
1630
+ "loss": 1.356,
1631
+ "step": 265
1632
+ },
1633
+ {
1634
+ "epoch": 8.18,
1635
+ "learning_rate": 2.5e-07,
1636
+ "loss": 1.4304,
1637
+ "step": 266
1638
+ },
1639
+ {
1640
+ "epoch": 8.22,
1641
+ "learning_rate": 2.5e-07,
1642
+ "loss": 1.2296,
1643
+ "step": 267
1644
+ },
1645
+ {
1646
+ "epoch": 8.25,
1647
+ "learning_rate": 2.5e-07,
1648
+ "loss": 1.4255,
1649
+ "step": 268
1650
+ },
1651
+ {
1652
+ "epoch": 8.28,
1653
+ "learning_rate": 2.5e-07,
1654
+ "loss": 1.4978,
1655
+ "step": 269
1656
+ },
1657
+ {
1658
+ "epoch": 8.31,
1659
+ "learning_rate": 2.5e-07,
1660
+ "loss": 1.4115,
1661
+ "step": 270
1662
+ },
1663
+ {
1664
+ "epoch": 8.34,
1665
+ "learning_rate": 2.5e-07,
1666
+ "loss": 1.4366,
1667
+ "step": 271
1668
+ },
1669
+ {
1670
+ "epoch": 8.37,
1671
+ "learning_rate": 2.5e-07,
1672
+ "loss": 1.2477,
1673
+ "step": 272
1674
+ },
1675
+ {
1676
+ "epoch": 8.4,
1677
+ "learning_rate": 2.5e-07,
1678
+ "loss": 1.453,
1679
+ "step": 273
1680
+ },
1681
+ {
1682
+ "epoch": 8.43,
1683
+ "learning_rate": 2.5e-07,
1684
+ "loss": 1.3008,
1685
+ "step": 274
1686
+ },
1687
+ {
1688
+ "epoch": 8.46,
1689
+ "learning_rate": 2.5e-07,
1690
+ "loss": 1.2511,
1691
+ "step": 275
1692
+ },
1693
+ {
1694
+ "epoch": 8.49,
1695
+ "learning_rate": 2.5e-07,
1696
+ "loss": 1.4864,
1697
+ "step": 276
1698
+ },
1699
+ {
1700
+ "epoch": 8.52,
1701
+ "learning_rate": 2.5e-07,
1702
+ "loss": 1.4733,
1703
+ "step": 277
1704
+ },
1705
+ {
1706
+ "epoch": 8.55,
1707
+ "learning_rate": 2.5e-07,
1708
+ "loss": 1.4998,
1709
+ "step": 278
1710
+ },
1711
+ {
1712
+ "epoch": 8.58,
1713
+ "learning_rate": 2.5e-07,
1714
+ "loss": 1.4771,
1715
+ "step": 279
1716
+ },
1717
+ {
1718
+ "epoch": 8.62,
1719
+ "learning_rate": 2.5e-07,
1720
+ "loss": 1.4164,
1721
+ "step": 280
1722
+ },
1723
+ {
1724
+ "epoch": 8.65,
1725
+ "learning_rate": 2.5e-07,
1726
+ "loss": 1.2803,
1727
+ "step": 281
1728
+ },
1729
+ {
1730
+ "epoch": 8.68,
1731
+ "learning_rate": 2.5e-07,
1732
+ "loss": 1.3673,
1733
+ "step": 282
1734
+ },
1735
+ {
1736
+ "epoch": 8.71,
1737
+ "learning_rate": 2.5e-07,
1738
+ "loss": 1.3849,
1739
+ "step": 283
1740
+ },
1741
+ {
1742
+ "epoch": 8.74,
1743
+ "learning_rate": 2.5e-07,
1744
+ "loss": 1.4484,
1745
+ "step": 284
1746
+ },
1747
+ {
1748
+ "epoch": 8.77,
1749
+ "learning_rate": 2.5e-07,
1750
+ "loss": 1.397,
1751
+ "step": 285
1752
+ },
1753
+ {
1754
+ "epoch": 8.8,
1755
+ "learning_rate": 2.5e-07,
1756
+ "loss": 1.5398,
1757
+ "step": 286
1758
+ },
1759
+ {
1760
+ "epoch": 8.83,
1761
+ "learning_rate": 2.5e-07,
1762
+ "loss": 1.2841,
1763
+ "step": 287
1764
+ },
1765
+ {
1766
+ "epoch": 8.86,
1767
+ "learning_rate": 2.5e-07,
1768
+ "loss": 1.2991,
1769
+ "step": 288
1770
+ },
1771
+ {
1772
+ "epoch": 8.89,
1773
+ "learning_rate": 2.5e-07,
1774
+ "loss": 1.3,
1775
+ "step": 289
1776
+ },
1777
+ {
1778
+ "epoch": 8.92,
1779
+ "learning_rate": 2.5e-07,
1780
+ "loss": 1.413,
1781
+ "step": 290
1782
+ },
1783
+ {
1784
+ "epoch": 8.95,
1785
+ "learning_rate": 2.5e-07,
1786
+ "loss": 1.3346,
1787
+ "step": 291
1788
+ },
1789
+ {
1790
+ "epoch": 8.98,
1791
+ "learning_rate": 2.5e-07,
1792
+ "loss": 1.3362,
1793
+ "step": 292
1794
+ },
1795
+ {
1796
+ "epoch": 9.02,
1797
+ "learning_rate": 2.5e-07,
1798
+ "loss": 1.1674,
1799
+ "step": 293
1800
+ },
1801
+ {
1802
+ "epoch": 9.05,
1803
+ "learning_rate": 2.5e-07,
1804
+ "loss": 1.4128,
1805
+ "step": 294
1806
+ },
1807
+ {
1808
+ "epoch": 9.08,
1809
+ "learning_rate": 2.5e-07,
1810
+ "loss": 1.461,
1811
+ "step": 295
1812
+ },
1813
+ {
1814
+ "epoch": 9.11,
1815
+ "learning_rate": 2.5e-07,
1816
+ "loss": 1.3092,
1817
+ "step": 296
1818
+ },
1819
+ {
1820
+ "epoch": 9.14,
1821
+ "learning_rate": 2.5e-07,
1822
+ "loss": 1.2157,
1823
+ "step": 297
1824
+ },
1825
+ {
1826
+ "epoch": 9.17,
1827
+ "learning_rate": 2.5e-07,
1828
+ "loss": 1.3718,
1829
+ "step": 298
1830
+ },
1831
+ {
1832
+ "epoch": 9.2,
1833
+ "learning_rate": 2.5e-07,
1834
+ "loss": 1.4823,
1835
+ "step": 299
1836
+ },
1837
+ {
1838
+ "epoch": 9.23,
1839
+ "learning_rate": 2.5e-07,
1840
+ "loss": 1.4398,
1841
+ "step": 300
1842
+ },
1843
+ {
1844
+ "epoch": 9.26,
1845
+ "learning_rate": 2.5e-07,
1846
+ "loss": 1.3343,
1847
+ "step": 301
1848
+ },
1849
+ {
1850
+ "epoch": 9.29,
1851
+ "learning_rate": 2.5e-07,
1852
+ "loss": 1.1481,
1853
+ "step": 302
1854
+ },
1855
+ {
1856
+ "epoch": 9.32,
1857
+ "learning_rate": 2.5e-07,
1858
+ "loss": 1.3867,
1859
+ "step": 303
1860
+ },
1861
+ {
1862
+ "epoch": 9.35,
1863
+ "learning_rate": 2.5e-07,
1864
+ "loss": 1.3983,
1865
+ "step": 304
1866
+ },
1867
+ {
1868
+ "epoch": 9.38,
1869
+ "learning_rate": 2.5e-07,
1870
+ "loss": 1.3382,
1871
+ "step": 305
1872
+ },
1873
+ {
1874
+ "epoch": 9.42,
1875
+ "learning_rate": 2.5e-07,
1876
+ "loss": 1.4251,
1877
+ "step": 306
1878
+ },
1879
+ {
1880
+ "epoch": 9.45,
1881
+ "learning_rate": 2.5e-07,
1882
+ "loss": 1.2907,
1883
+ "step": 307
1884
+ },
1885
+ {
1886
+ "epoch": 9.48,
1887
+ "learning_rate": 2.5e-07,
1888
+ "loss": 1.2584,
1889
+ "step": 308
1890
+ },
1891
+ {
1892
+ "epoch": 9.51,
1893
+ "learning_rate": 2.5e-07,
1894
+ "loss": 1.3281,
1895
+ "step": 309
1896
+ },
1897
+ {
1898
+ "epoch": 9.54,
1899
+ "learning_rate": 2.5e-07,
1900
+ "loss": 1.4022,
1901
+ "step": 310
1902
+ },
1903
+ {
1904
+ "epoch": 9.57,
1905
+ "learning_rate": 2.5e-07,
1906
+ "loss": 1.3523,
1907
+ "step": 311
1908
+ },
1909
+ {
1910
+ "epoch": 9.6,
1911
+ "learning_rate": 2.5e-07,
1912
+ "loss": 1.5241,
1913
+ "step": 312
1914
+ },
1915
+ {
1916
+ "epoch": 9.63,
1917
+ "learning_rate": 2.5e-07,
1918
+ "loss": 1.1701,
1919
+ "step": 313
1920
+ },
1921
+ {
1922
+ "epoch": 9.66,
1923
+ "learning_rate": 2.5e-07,
1924
+ "loss": 1.194,
1925
+ "step": 314
1926
+ },
1927
+ {
1928
+ "epoch": 9.69,
1929
+ "learning_rate": 2.5e-07,
1930
+ "loss": 1.4622,
1931
+ "step": 315
1932
+ },
1933
+ {
1934
+ "epoch": 9.72,
1935
+ "learning_rate": 2.5e-07,
1936
+ "loss": 1.1747,
1937
+ "step": 316
1938
+ },
1939
+ {
1940
+ "epoch": 9.75,
1941
+ "learning_rate": 2.5e-07,
1942
+ "loss": 1.4286,
1943
+ "step": 317
1944
+ },
1945
+ {
1946
+ "epoch": 9.78,
1947
+ "learning_rate": 2.5e-07,
1948
+ "loss": 1.3895,
1949
+ "step": 318
1950
+ },
1951
+ {
1952
+ "epoch": 9.82,
1953
+ "learning_rate": 2.5e-07,
1954
+ "loss": 1.3746,
1955
+ "step": 319
1956
+ },
1957
+ {
1958
+ "epoch": 9.85,
1959
+ "learning_rate": 2.5e-07,
1960
+ "loss": 1.2196,
1961
+ "step": 320
1962
+ },
1963
+ {
1964
+ "epoch": 9.85,
1965
+ "eval_loss": 1.2475242614746094,
1966
+ "eval_runtime": 1.7503,
1967
+ "eval_samples_per_second": 3.999,
1968
+ "eval_steps_per_second": 2.285,
1969
+ "step": 320
1970
+ },
1971
+ {
1972
+ "epoch": 9.88,
1973
+ "learning_rate": 2.5e-07,
1974
+ "loss": 1.2543,
1975
+ "step": 321
1976
+ },
1977
+ {
1978
+ "epoch": 9.91,
1979
+ "learning_rate": 2.5e-07,
1980
+ "loss": 1.239,
1981
+ "step": 322
1982
+ },
1983
+ {
1984
+ "epoch": 9.94,
1985
+ "learning_rate": 2.5e-07,
1986
+ "loss": 1.3088,
1987
+ "step": 323
1988
+ },
1989
+ {
1990
+ "epoch": 9.97,
1991
+ "learning_rate": 2.5e-07,
1992
+ "loss": 1.299,
1993
+ "step": 324
1994
+ },
1995
+ {
1996
+ "epoch": 10.0,
1997
+ "learning_rate": 2.5e-07,
1998
+ "loss": 1.3273,
1999
+ "step": 325
2000
+ },
2001
+ {
2002
+ "epoch": 10.03,
2003
+ "learning_rate": 2.5e-07,
2004
+ "loss": 1.3335,
2005
+ "step": 326
2006
+ },
2007
+ {
2008
+ "epoch": 10.06,
2009
+ "learning_rate": 2.5e-07,
2010
+ "loss": 1.317,
2011
+ "step": 327
2012
+ },
2013
+ {
2014
+ "epoch": 10.09,
2015
+ "learning_rate": 2.5e-07,
2016
+ "loss": 1.3048,
2017
+ "step": 328
2018
+ },
2019
+ {
2020
+ "epoch": 10.12,
2021
+ "learning_rate": 2.5e-07,
2022
+ "loss": 1.429,
2023
+ "step": 329
2024
+ },
2025
+ {
2026
+ "epoch": 10.15,
2027
+ "learning_rate": 2.5e-07,
2028
+ "loss": 1.2001,
2029
+ "step": 330
2030
+ },
2031
+ {
2032
+ "epoch": 10.18,
2033
+ "learning_rate": 2.5e-07,
2034
+ "loss": 1.3512,
2035
+ "step": 331
2036
+ },
2037
+ {
2038
+ "epoch": 10.22,
2039
+ "learning_rate": 2.5e-07,
2040
+ "loss": 1.2161,
2041
+ "step": 332
2042
+ },
2043
+ {
2044
+ "epoch": 10.25,
2045
+ "learning_rate": 2.5e-07,
2046
+ "loss": 1.2098,
2047
+ "step": 333
2048
+ },
2049
+ {
2050
+ "epoch": 10.28,
2051
+ "learning_rate": 2.5e-07,
2052
+ "loss": 1.3637,
2053
+ "step": 334
2054
+ },
2055
+ {
2056
+ "epoch": 10.31,
2057
+ "learning_rate": 2.5e-07,
2058
+ "loss": 1.3788,
2059
+ "step": 335
2060
+ },
2061
+ {
2062
+ "epoch": 10.34,
2063
+ "learning_rate": 2.5e-07,
2064
+ "loss": 1.2368,
2065
+ "step": 336
2066
+ },
2067
+ {
2068
+ "epoch": 10.37,
2069
+ "learning_rate": 2.5e-07,
2070
+ "loss": 1.348,
2071
+ "step": 337
2072
+ },
2073
+ {
2074
+ "epoch": 10.4,
2075
+ "learning_rate": 2.5e-07,
2076
+ "loss": 1.0986,
2077
+ "step": 338
2078
+ },
2079
+ {
2080
+ "epoch": 10.43,
2081
+ "learning_rate": 2.5e-07,
2082
+ "loss": 1.3233,
2083
+ "step": 339
2084
+ },
2085
+ {
2086
+ "epoch": 10.46,
2087
+ "learning_rate": 2.5e-07,
2088
+ "loss": 1.3613,
2089
+ "step": 340
2090
+ },
2091
+ {
2092
+ "epoch": 10.49,
2093
+ "learning_rate": 2.5e-07,
2094
+ "loss": 1.3211,
2095
+ "step": 341
2096
+ },
2097
+ {
2098
+ "epoch": 10.52,
2099
+ "learning_rate": 2.5e-07,
2100
+ "loss": 1.5044,
2101
+ "step": 342
2102
+ },
2103
+ {
2104
+ "epoch": 10.55,
2105
+ "learning_rate": 2.5e-07,
2106
+ "loss": 1.3033,
2107
+ "step": 343
2108
+ },
2109
+ {
2110
+ "epoch": 10.58,
2111
+ "learning_rate": 2.5e-07,
2112
+ "loss": 1.4222,
2113
+ "step": 344
2114
+ },
2115
+ {
2116
+ "epoch": 10.62,
2117
+ "learning_rate": 2.5e-07,
2118
+ "loss": 1.4241,
2119
+ "step": 345
2120
+ },
2121
+ {
2122
+ "epoch": 10.65,
2123
+ "learning_rate": 2.5e-07,
2124
+ "loss": 1.3264,
2125
+ "step": 346
2126
+ },
2127
+ {
2128
+ "epoch": 10.68,
2129
+ "learning_rate": 2.5e-07,
2130
+ "loss": 1.4957,
2131
+ "step": 347
2132
+ },
2133
+ {
2134
+ "epoch": 10.71,
2135
+ "learning_rate": 2.5e-07,
2136
+ "loss": 1.1016,
2137
+ "step": 348
2138
+ },
2139
+ {
2140
+ "epoch": 10.74,
2141
+ "learning_rate": 2.5e-07,
2142
+ "loss": 1.2492,
2143
+ "step": 349
2144
+ },
2145
+ {
2146
+ "epoch": 10.77,
2147
+ "learning_rate": 2.5e-07,
2148
+ "loss": 1.1237,
2149
+ "step": 350
2150
+ },
2151
+ {
2152
+ "epoch": 10.8,
2153
+ "learning_rate": 2.5e-07,
2154
+ "loss": 1.4371,
2155
+ "step": 351
2156
+ },
2157
+ {
2158
+ "epoch": 10.83,
2159
+ "learning_rate": 2.5e-07,
2160
+ "loss": 1.438,
2161
+ "step": 352
2162
+ },
2163
+ {
2164
+ "epoch": 10.86,
2165
+ "learning_rate": 2.5e-07,
2166
+ "loss": 1.2182,
2167
+ "step": 353
2168
+ },
2169
+ {
2170
+ "epoch": 10.89,
2171
+ "learning_rate": 2.5e-07,
2172
+ "loss": 1.2577,
2173
+ "step": 354
2174
+ },
2175
+ {
2176
+ "epoch": 10.92,
2177
+ "learning_rate": 2.5e-07,
2178
+ "loss": 1.2687,
2179
+ "step": 355
2180
+ },
2181
+ {
2182
+ "epoch": 10.95,
2183
+ "learning_rate": 2.5e-07,
2184
+ "loss": 1.3387,
2185
+ "step": 356
2186
+ },
2187
+ {
2188
+ "epoch": 10.98,
2189
+ "learning_rate": 2.5e-07,
2190
+ "loss": 1.3571,
2191
+ "step": 357
2192
+ },
2193
+ {
2194
+ "epoch": 11.02,
2195
+ "learning_rate": 2.5e-07,
2196
+ "loss": 1.2289,
2197
+ "step": 358
2198
+ },
2199
+ {
2200
+ "epoch": 11.05,
2201
+ "learning_rate": 2.5e-07,
2202
+ "loss": 1.2925,
2203
+ "step": 359
2204
+ },
2205
+ {
2206
+ "epoch": 11.08,
2207
+ "learning_rate": 2.5e-07,
2208
+ "loss": 1.3187,
2209
+ "step": 360
2210
+ },
2211
+ {
2212
+ "epoch": 11.11,
2213
+ "learning_rate": 2.5e-07,
2214
+ "loss": 1.3628,
2215
+ "step": 361
2216
+ },
2217
+ {
2218
+ "epoch": 11.14,
2219
+ "learning_rate": 2.5e-07,
2220
+ "loss": 1.2547,
2221
+ "step": 362
2222
+ },
2223
+ {
2224
+ "epoch": 11.17,
2225
+ "learning_rate": 2.5e-07,
2226
+ "loss": 1.3169,
2227
+ "step": 363
2228
+ },
2229
+ {
2230
+ "epoch": 11.2,
2231
+ "learning_rate": 2.5e-07,
2232
+ "loss": 1.2921,
2233
+ "step": 364
2234
+ },
2235
+ {
2236
+ "epoch": 11.23,
2237
+ "learning_rate": 2.5e-07,
2238
+ "loss": 1.3426,
2239
+ "step": 365
2240
+ },
2241
+ {
2242
+ "epoch": 11.26,
2243
+ "learning_rate": 2.5e-07,
2244
+ "loss": 1.4212,
2245
+ "step": 366
2246
+ },
2247
+ {
2248
+ "epoch": 11.29,
2249
+ "learning_rate": 2.5e-07,
2250
+ "loss": 1.2466,
2251
+ "step": 367
2252
+ },
2253
+ {
2254
+ "epoch": 11.32,
2255
+ "learning_rate": 2.5e-07,
2256
+ "loss": 1.3367,
2257
+ "step": 368
2258
+ },
2259
+ {
2260
+ "epoch": 11.35,
2261
+ "learning_rate": 2.5e-07,
2262
+ "loss": 1.3179,
2263
+ "step": 369
2264
+ },
2265
+ {
2266
+ "epoch": 11.38,
2267
+ "learning_rate": 2.5e-07,
2268
+ "loss": 1.2568,
2269
+ "step": 370
2270
+ },
2271
+ {
2272
+ "epoch": 11.42,
2273
+ "learning_rate": 2.5e-07,
2274
+ "loss": 1.1769,
2275
+ "step": 371
2276
+ },
2277
+ {
2278
+ "epoch": 11.45,
2279
+ "learning_rate": 2.5e-07,
2280
+ "loss": 1.3068,
2281
+ "step": 372
2282
+ },
2283
+ {
2284
+ "epoch": 11.48,
2285
+ "learning_rate": 2.5e-07,
2286
+ "loss": 1.1623,
2287
+ "step": 373
2288
+ },
2289
+ {
2290
+ "epoch": 11.51,
2291
+ "learning_rate": 2.5e-07,
2292
+ "loss": 1.2147,
2293
+ "step": 374
2294
+ },
2295
+ {
2296
+ "epoch": 11.54,
2297
+ "learning_rate": 2.5e-07,
2298
+ "loss": 1.4786,
2299
+ "step": 375
2300
+ },
2301
+ {
2302
+ "epoch": 11.57,
2303
+ "learning_rate": 2.5e-07,
2304
+ "loss": 1.3387,
2305
+ "step": 376
2306
+ },
2307
+ {
2308
+ "epoch": 11.6,
2309
+ "learning_rate": 2.5e-07,
2310
+ "loss": 1.261,
2311
+ "step": 377
2312
+ },
2313
+ {
2314
+ "epoch": 11.63,
2315
+ "learning_rate": 2.5e-07,
2316
+ "loss": 1.2758,
2317
+ "step": 378
2318
+ },
2319
+ {
2320
+ "epoch": 11.66,
2321
+ "learning_rate": 2.5e-07,
2322
+ "loss": 1.2917,
2323
+ "step": 379
2324
+ },
2325
+ {
2326
+ "epoch": 11.69,
2327
+ "learning_rate": 2.5e-07,
2328
+ "loss": 1.3428,
2329
+ "step": 380
2330
+ },
2331
+ {
2332
+ "epoch": 11.72,
2333
+ "learning_rate": 2.5e-07,
2334
+ "loss": 1.4322,
2335
+ "step": 381
2336
+ },
2337
+ {
2338
+ "epoch": 11.75,
2339
+ "learning_rate": 2.5e-07,
2340
+ "loss": 1.2796,
2341
+ "step": 382
2342
+ },
2343
+ {
2344
+ "epoch": 11.78,
2345
+ "learning_rate": 2.5e-07,
2346
+ "loss": 1.318,
2347
+ "step": 383
2348
+ },
2349
+ {
2350
+ "epoch": 11.82,
2351
+ "learning_rate": 2.5e-07,
2352
+ "loss": 1.2229,
2353
+ "step": 384
2354
+ },
2355
+ {
2356
+ "epoch": 11.85,
2357
+ "learning_rate": 2.5e-07,
2358
+ "loss": 1.1542,
2359
+ "step": 385
2360
+ },
2361
+ {
2362
+ "epoch": 11.88,
2363
+ "learning_rate": 2.5e-07,
2364
+ "loss": 1.3305,
2365
+ "step": 386
2366
+ },
2367
+ {
2368
+ "epoch": 11.91,
2369
+ "learning_rate": 2.5e-07,
2370
+ "loss": 1.3448,
2371
+ "step": 387
2372
+ },
2373
+ {
2374
+ "epoch": 11.94,
2375
+ "learning_rate": 2.5e-07,
2376
+ "loss": 1.2508,
2377
+ "step": 388
2378
+ },
2379
+ {
2380
+ "epoch": 11.97,
2381
+ "learning_rate": 2.5e-07,
2382
+ "loss": 1.3033,
2383
+ "step": 389
2384
+ },
2385
+ {
2386
+ "epoch": 12.0,
2387
+ "learning_rate": 2.5e-07,
2388
+ "loss": 1.1879,
2389
+ "step": 390
2390
+ },
2391
+ {
2392
+ "epoch": 12.03,
2393
+ "learning_rate": 2.5e-07,
2394
+ "loss": 1.3695,
2395
+ "step": 391
2396
+ },
2397
+ {
2398
+ "epoch": 12.06,
2399
+ "learning_rate": 2.5e-07,
2400
+ "loss": 1.278,
2401
+ "step": 392
2402
+ },
2403
+ {
2404
+ "epoch": 12.09,
2405
+ "learning_rate": 2.5e-07,
2406
+ "loss": 1.4726,
2407
+ "step": 393
2408
+ },
2409
+ {
2410
+ "epoch": 12.12,
2411
+ "learning_rate": 2.5e-07,
2412
+ "loss": 1.142,
2413
+ "step": 394
2414
+ },
2415
+ {
2416
+ "epoch": 12.15,
2417
+ "learning_rate": 2.5e-07,
2418
+ "loss": 1.2075,
2419
+ "step": 395
2420
+ },
2421
+ {
2422
+ "epoch": 12.18,
2423
+ "learning_rate": 2.5e-07,
2424
+ "loss": 1.4716,
2425
+ "step": 396
2426
+ },
2427
+ {
2428
+ "epoch": 12.22,
2429
+ "learning_rate": 2.5e-07,
2430
+ "loss": 1.336,
2431
+ "step": 397
2432
+ },
2433
+ {
2434
+ "epoch": 12.25,
2435
+ "learning_rate": 2.5e-07,
2436
+ "loss": 1.0818,
2437
+ "step": 398
2438
+ },
2439
+ {
2440
+ "epoch": 12.28,
2441
+ "learning_rate": 2.5e-07,
2442
+ "loss": 1.3366,
2443
+ "step": 399
2444
+ },
2445
+ {
2446
+ "epoch": 12.31,
2447
+ "learning_rate": 2.5e-07,
2448
+ "loss": 1.3219,
2449
+ "step": 400
2450
+ },
2451
+ {
2452
+ "epoch": 12.31,
2453
+ "eval_loss": 1.2088563442230225,
2454
+ "eval_runtime": 1.7541,
2455
+ "eval_samples_per_second": 3.991,
2456
+ "eval_steps_per_second": 2.28,
2457
+ "step": 400
2458
+ },
2459
+ {
2460
+ "epoch": 12.34,
2461
+ "learning_rate": 2.5e-07,
2462
+ "loss": 1.4101,
2463
+ "step": 401
2464
+ },
2465
+ {
2466
+ "epoch": 12.37,
2467
+ "learning_rate": 2.5e-07,
2468
+ "loss": 1.2773,
2469
+ "step": 402
2470
+ },
2471
+ {
2472
+ "epoch": 12.4,
2473
+ "learning_rate": 2.5e-07,
2474
+ "loss": 1.3575,
2475
+ "step": 403
2476
+ },
2477
+ {
2478
+ "epoch": 12.43,
2479
+ "learning_rate": 2.5e-07,
2480
+ "loss": 1.089,
2481
+ "step": 404
2482
+ },
2483
+ {
2484
+ "epoch": 12.46,
2485
+ "learning_rate": 2.5e-07,
2486
+ "loss": 1.4164,
2487
+ "step": 405
2488
+ },
2489
+ {
2490
+ "epoch": 12.49,
2491
+ "learning_rate": 2.5e-07,
2492
+ "loss": 1.3292,
2493
+ "step": 406
2494
+ },
2495
+ {
2496
+ "epoch": 12.52,
2497
+ "learning_rate": 2.5e-07,
2498
+ "loss": 1.3447,
2499
+ "step": 407
2500
+ },
2501
+ {
2502
+ "epoch": 12.55,
2503
+ "learning_rate": 2.5e-07,
2504
+ "loss": 1.4455,
2505
+ "step": 408
2506
+ },
2507
+ {
2508
+ "epoch": 12.58,
2509
+ "learning_rate": 2.5e-07,
2510
+ "loss": 1.3716,
2511
+ "step": 409
2512
+ },
2513
+ {
2514
+ "epoch": 12.62,
2515
+ "learning_rate": 2.5e-07,
2516
+ "loss": 1.338,
2517
+ "step": 410
2518
+ },
2519
+ {
2520
+ "epoch": 12.65,
2521
+ "learning_rate": 2.5e-07,
2522
+ "loss": 1.2842,
2523
+ "step": 411
2524
+ },
2525
+ {
2526
+ "epoch": 12.68,
2527
+ "learning_rate": 2.5e-07,
2528
+ "loss": 1.0655,
2529
+ "step": 412
2530
+ },
2531
+ {
2532
+ "epoch": 12.71,
2533
+ "learning_rate": 2.5e-07,
2534
+ "loss": 1.1405,
2535
+ "step": 413
2536
+ },
2537
+ {
2538
+ "epoch": 12.74,
2539
+ "learning_rate": 2.5e-07,
2540
+ "loss": 1.3488,
2541
+ "step": 414
2542
+ },
2543
+ {
2544
+ "epoch": 12.77,
2545
+ "learning_rate": 2.5e-07,
2546
+ "loss": 1.1401,
2547
+ "step": 415
2548
+ },
2549
+ {
2550
+ "epoch": 12.8,
2551
+ "learning_rate": 2.5e-07,
2552
+ "loss": 1.2261,
2553
+ "step": 416
2554
+ },
2555
+ {
2556
+ "epoch": 12.83,
2557
+ "learning_rate": 2.5e-07,
2558
+ "loss": 1.2211,
2559
+ "step": 417
2560
+ },
2561
+ {
2562
+ "epoch": 12.86,
2563
+ "learning_rate": 2.5e-07,
2564
+ "loss": 1.235,
2565
+ "step": 418
2566
+ },
2567
+ {
2568
+ "epoch": 12.89,
2569
+ "learning_rate": 2.5e-07,
2570
+ "loss": 1.2779,
2571
+ "step": 419
2572
+ },
2573
+ {
2574
+ "epoch": 12.92,
2575
+ "learning_rate": 2.5e-07,
2576
+ "loss": 1.228,
2577
+ "step": 420
2578
+ },
2579
+ {
2580
+ "epoch": 12.95,
2581
+ "learning_rate": 2.5e-07,
2582
+ "loss": 1.3058,
2583
+ "step": 421
2584
+ },
2585
+ {
2586
+ "epoch": 12.98,
2587
+ "learning_rate": 2.5e-07,
2588
+ "loss": 1.2325,
2589
+ "step": 422
2590
+ },
2591
+ {
2592
+ "epoch": 13.02,
2593
+ "learning_rate": 2.5e-07,
2594
+ "loss": 1.3127,
2595
+ "step": 423
2596
+ },
2597
+ {
2598
+ "epoch": 13.05,
2599
+ "learning_rate": 2.5e-07,
2600
+ "loss": 1.382,
2601
+ "step": 424
2602
+ },
2603
+ {
2604
+ "epoch": 13.08,
2605
+ "learning_rate": 2.5e-07,
2606
+ "loss": 1.3625,
2607
+ "step": 425
2608
+ },
2609
+ {
2610
+ "epoch": 13.11,
2611
+ "learning_rate": 2.5e-07,
2612
+ "loss": 1.3533,
2613
+ "step": 426
2614
+ },
2615
+ {
2616
+ "epoch": 13.14,
2617
+ "learning_rate": 2.5e-07,
2618
+ "loss": 1.2046,
2619
+ "step": 427
2620
+ },
2621
+ {
2622
+ "epoch": 13.17,
2623
+ "learning_rate": 2.5e-07,
2624
+ "loss": 1.2991,
2625
+ "step": 428
2626
+ },
2627
+ {
2628
+ "epoch": 13.2,
2629
+ "learning_rate": 2.5e-07,
2630
+ "loss": 1.1785,
2631
+ "step": 429
2632
+ },
2633
+ {
2634
+ "epoch": 13.23,
2635
+ "learning_rate": 2.5e-07,
2636
+ "loss": 1.2795,
2637
+ "step": 430
2638
+ },
2639
+ {
2640
+ "epoch": 13.26,
2641
+ "learning_rate": 2.5e-07,
2642
+ "loss": 1.248,
2643
+ "step": 431
2644
+ },
2645
+ {
2646
+ "epoch": 13.29,
2647
+ "learning_rate": 2.5e-07,
2648
+ "loss": 1.3476,
2649
+ "step": 432
2650
+ },
2651
+ {
2652
+ "epoch": 13.32,
2653
+ "learning_rate": 2.5e-07,
2654
+ "loss": 1.277,
2655
+ "step": 433
2656
+ },
2657
+ {
2658
+ "epoch": 13.35,
2659
+ "learning_rate": 2.5e-07,
2660
+ "loss": 1.2044,
2661
+ "step": 434
2662
+ },
2663
+ {
2664
+ "epoch": 13.38,
2665
+ "learning_rate": 2.5e-07,
2666
+ "loss": 1.1909,
2667
+ "step": 435
2668
+ },
2669
+ {
2670
+ "epoch": 13.42,
2671
+ "learning_rate": 2.5e-07,
2672
+ "loss": 1.2544,
2673
+ "step": 436
2674
+ },
2675
+ {
2676
+ "epoch": 13.45,
2677
+ "learning_rate": 2.5e-07,
2678
+ "loss": 1.2036,
2679
+ "step": 437
2680
+ },
2681
+ {
2682
+ "epoch": 13.48,
2683
+ "learning_rate": 2.5e-07,
2684
+ "loss": 1.2141,
2685
+ "step": 438
2686
+ },
2687
+ {
2688
+ "epoch": 13.51,
2689
+ "learning_rate": 2.5e-07,
2690
+ "loss": 1.2086,
2691
+ "step": 439
2692
+ },
2693
+ {
2694
+ "epoch": 13.54,
2695
+ "learning_rate": 2.5e-07,
2696
+ "loss": 1.3863,
2697
+ "step": 440
2698
+ },
2699
+ {
2700
+ "epoch": 13.57,
2701
+ "learning_rate": 2.5e-07,
2702
+ "loss": 1.2435,
2703
+ "step": 441
2704
+ },
2705
+ {
2706
+ "epoch": 13.6,
2707
+ "learning_rate": 2.5e-07,
2708
+ "loss": 1.3655,
2709
+ "step": 442
2710
+ },
2711
+ {
2712
+ "epoch": 13.63,
2713
+ "learning_rate": 2.5e-07,
2714
+ "loss": 1.3562,
2715
+ "step": 443
2716
+ },
2717
+ {
2718
+ "epoch": 13.66,
2719
+ "learning_rate": 2.5e-07,
2720
+ "loss": 1.3441,
2721
+ "step": 444
2722
+ },
2723
+ {
2724
+ "epoch": 13.69,
2725
+ "learning_rate": 2.5e-07,
2726
+ "loss": 1.342,
2727
+ "step": 445
2728
+ },
2729
+ {
2730
+ "epoch": 13.72,
2731
+ "learning_rate": 2.5e-07,
2732
+ "loss": 1.0318,
2733
+ "step": 446
2734
+ },
2735
+ {
2736
+ "epoch": 13.75,
2737
+ "learning_rate": 2.5e-07,
2738
+ "loss": 1.3068,
2739
+ "step": 447
2740
+ },
2741
+ {
2742
+ "epoch": 13.78,
2743
+ "learning_rate": 2.5e-07,
2744
+ "loss": 1.4054,
2745
+ "step": 448
2746
+ },
2747
+ {
2748
+ "epoch": 13.82,
2749
+ "learning_rate": 2.5e-07,
2750
+ "loss": 1.1914,
2751
+ "step": 449
2752
+ },
2753
+ {
2754
+ "epoch": 13.85,
2755
+ "learning_rate": 2.5e-07,
2756
+ "loss": 1.3734,
2757
+ "step": 450
2758
+ },
2759
+ {
2760
+ "epoch": 13.88,
2761
+ "learning_rate": 2.5e-07,
2762
+ "loss": 1.3705,
2763
+ "step": 451
2764
+ },
2765
+ {
2766
+ "epoch": 13.91,
2767
+ "learning_rate": 2.5e-07,
2768
+ "loss": 1.2954,
2769
+ "step": 452
2770
+ },
2771
+ {
2772
+ "epoch": 13.94,
2773
+ "learning_rate": 2.5e-07,
2774
+ "loss": 1.2625,
2775
+ "step": 453
2776
+ },
2777
+ {
2778
+ "epoch": 13.97,
2779
+ "learning_rate": 2.5e-07,
2780
+ "loss": 1.0147,
2781
+ "step": 454
2782
+ },
2783
+ {
2784
+ "epoch": 14.0,
2785
+ "learning_rate": 2.5e-07,
2786
+ "loss": 1.2888,
2787
+ "step": 455
2788
+ },
2789
+ {
2790
+ "epoch": 14.03,
2791
+ "learning_rate": 2.5e-07,
2792
+ "loss": 1.1156,
2793
+ "step": 456
2794
+ },
2795
+ {
2796
+ "epoch": 14.06,
2797
+ "learning_rate": 2.5e-07,
2798
+ "loss": 1.421,
2799
+ "step": 457
2800
+ },
2801
+ {
2802
+ "epoch": 14.09,
2803
+ "learning_rate": 2.5e-07,
2804
+ "loss": 1.2285,
2805
+ "step": 458
2806
+ },
2807
+ {
2808
+ "epoch": 14.12,
2809
+ "learning_rate": 2.5e-07,
2810
+ "loss": 1.2881,
2811
+ "step": 459
2812
+ },
2813
+ {
2814
+ "epoch": 14.15,
2815
+ "learning_rate": 2.5e-07,
2816
+ "loss": 1.2028,
2817
+ "step": 460
2818
+ },
2819
+ {
2820
+ "epoch": 14.18,
2821
+ "learning_rate": 2.5e-07,
2822
+ "loss": 1.2213,
2823
+ "step": 461
2824
+ },
2825
+ {
2826
+ "epoch": 14.22,
2827
+ "learning_rate": 2.5e-07,
2828
+ "loss": 1.2455,
2829
+ "step": 462
2830
+ },
2831
+ {
2832
+ "epoch": 14.25,
2833
+ "learning_rate": 2.5e-07,
2834
+ "loss": 1.2788,
2835
+ "step": 463
2836
+ },
2837
+ {
2838
+ "epoch": 14.28,
2839
+ "learning_rate": 2.5e-07,
2840
+ "loss": 1.1349,
2841
+ "step": 464
2842
+ },
2843
+ {
2844
+ "epoch": 14.31,
2845
+ "learning_rate": 2.5e-07,
2846
+ "loss": 1.3234,
2847
+ "step": 465
2848
+ },
2849
+ {
2850
+ "epoch": 14.34,
2851
+ "learning_rate": 2.5e-07,
2852
+ "loss": 1.2652,
2853
+ "step": 466
2854
+ },
2855
+ {
2856
+ "epoch": 14.37,
2857
+ "learning_rate": 2.5e-07,
2858
+ "loss": 1.3123,
2859
+ "step": 467
2860
+ },
2861
+ {
2862
+ "epoch": 14.4,
2863
+ "learning_rate": 2.5e-07,
2864
+ "loss": 1.3447,
2865
+ "step": 468
2866
+ },
2867
+ {
2868
+ "epoch": 14.43,
2869
+ "learning_rate": 2.5e-07,
2870
+ "loss": 1.2818,
2871
+ "step": 469
2872
+ },
2873
+ {
2874
+ "epoch": 14.46,
2875
+ "learning_rate": 2.5e-07,
2876
+ "loss": 1.1331,
2877
+ "step": 470
2878
+ },
2879
+ {
2880
+ "epoch": 14.49,
2881
+ "learning_rate": 2.5e-07,
2882
+ "loss": 1.2309,
2883
+ "step": 471
2884
+ },
2885
+ {
2886
+ "epoch": 14.52,
2887
+ "learning_rate": 2.5e-07,
2888
+ "loss": 1.2867,
2889
+ "step": 472
2890
+ },
2891
+ {
2892
+ "epoch": 14.55,
2893
+ "learning_rate": 2.5e-07,
2894
+ "loss": 1.3339,
2895
+ "step": 473
2896
+ },
2897
+ {
2898
+ "epoch": 14.58,
2899
+ "learning_rate": 2.5e-07,
2900
+ "loss": 1.4158,
2901
+ "step": 474
2902
+ },
2903
+ {
2904
+ "epoch": 14.62,
2905
+ "learning_rate": 2.5e-07,
2906
+ "loss": 1.529,
2907
+ "step": 475
2908
+ },
2909
+ {
2910
+ "epoch": 14.65,
2911
+ "learning_rate": 2.5e-07,
2912
+ "loss": 1.258,
2913
+ "step": 476
2914
+ },
2915
+ {
2916
+ "epoch": 14.68,
2917
+ "learning_rate": 2.5e-07,
2918
+ "loss": 1.3033,
2919
+ "step": 477
2920
+ },
2921
+ {
2922
+ "epoch": 14.71,
2923
+ "learning_rate": 2.5e-07,
2924
+ "loss": 1.147,
2925
+ "step": 478
2926
+ },
2927
+ {
2928
+ "epoch": 14.74,
2929
+ "learning_rate": 2.5e-07,
2930
+ "loss": 1.3166,
2931
+ "step": 479
2932
+ },
2933
+ {
2934
+ "epoch": 14.77,
2935
+ "learning_rate": 2.5e-07,
2936
+ "loss": 1.2171,
2937
+ "step": 480
2938
+ },
2939
+ {
2940
+ "epoch": 14.77,
2941
+ "eval_loss": 1.1870461702346802,
2942
+ "eval_runtime": 1.7297,
2943
+ "eval_samples_per_second": 4.047,
2944
+ "eval_steps_per_second": 2.312,
2945
+ "step": 480
2946
+ },
2947
+ {
2948
+ "epoch": 14.8,
2949
+ "learning_rate": 2.5e-07,
2950
+ "loss": 1.18,
2951
+ "step": 481
2952
+ },
2953
+ {
2954
+ "epoch": 14.83,
2955
+ "learning_rate": 2.5e-07,
2956
+ "loss": 1.2117,
2957
+ "step": 482
2958
+ },
2959
+ {
2960
+ "epoch": 14.86,
2961
+ "learning_rate": 2.5e-07,
2962
+ "loss": 1.148,
2963
+ "step": 483
2964
+ },
2965
+ {
2966
+ "epoch": 14.89,
2967
+ "learning_rate": 2.5e-07,
2968
+ "loss": 1.3961,
2969
+ "step": 484
2970
+ },
2971
+ {
2972
+ "epoch": 14.92,
2973
+ "learning_rate": 2.5e-07,
2974
+ "loss": 1.3331,
2975
+ "step": 485
2976
+ },
2977
+ {
2978
+ "epoch": 14.95,
2979
+ "learning_rate": 2.5e-07,
2980
+ "loss": 1.3485,
2981
+ "step": 486
2982
+ },
2983
+ {
2984
+ "epoch": 14.98,
2985
+ "learning_rate": 2.5e-07,
2986
+ "loss": 1.0999,
2987
+ "step": 487
2988
+ },
2989
+ {
2990
+ "epoch": 15.02,
2991
+ "learning_rate": 2.5e-07,
2992
+ "loss": 1.2521,
2993
+ "step": 488
2994
+ },
2995
+ {
2996
+ "epoch": 15.05,
2997
+ "learning_rate": 2.5e-07,
2998
+ "loss": 1.2097,
2999
+ "step": 489
3000
+ },
3001
+ {
3002
+ "epoch": 15.08,
3003
+ "learning_rate": 2.5e-07,
3004
+ "loss": 1.2557,
3005
+ "step": 490
3006
+ },
3007
+ {
3008
+ "epoch": 15.11,
3009
+ "learning_rate": 2.5e-07,
3010
+ "loss": 1.2638,
3011
+ "step": 491
3012
+ },
3013
+ {
3014
+ "epoch": 15.14,
3015
+ "learning_rate": 2.5e-07,
3016
+ "loss": 1.3549,
3017
+ "step": 492
3018
+ },
3019
+ {
3020
+ "epoch": 15.17,
3021
+ "learning_rate": 2.5e-07,
3022
+ "loss": 1.2417,
3023
+ "step": 493
3024
+ },
3025
+ {
3026
+ "epoch": 15.2,
3027
+ "learning_rate": 2.5e-07,
3028
+ "loss": 1.2861,
3029
+ "step": 494
3030
+ },
3031
+ {
3032
+ "epoch": 15.23,
3033
+ "learning_rate": 2.5e-07,
3034
+ "loss": 1.2428,
3035
+ "step": 495
3036
+ },
3037
+ {
3038
+ "epoch": 15.26,
3039
+ "learning_rate": 2.5e-07,
3040
+ "loss": 1.1561,
3041
+ "step": 496
3042
+ },
3043
+ {
3044
+ "epoch": 15.29,
3045
+ "learning_rate": 2.5e-07,
3046
+ "loss": 1.2641,
3047
+ "step": 497
3048
+ },
3049
+ {
3050
+ "epoch": 15.32,
3051
+ "learning_rate": 2.5e-07,
3052
+ "loss": 1.3073,
3053
+ "step": 498
3054
+ },
3055
+ {
3056
+ "epoch": 15.35,
3057
+ "learning_rate": 2.5e-07,
3058
+ "loss": 1.2227,
3059
+ "step": 499
3060
+ },
3061
+ {
3062
+ "epoch": 15.38,
3063
+ "learning_rate": 2.5e-07,
3064
+ "loss": 1.3311,
3065
+ "step": 500
3066
+ },
3067
+ {
3068
+ "epoch": 15.42,
3069
+ "learning_rate": 2.5e-07,
3070
+ "loss": 1.2581,
3071
+ "step": 501
3072
+ },
3073
+ {
3074
+ "epoch": 15.45,
3075
+ "learning_rate": 2.5e-07,
3076
+ "loss": 1.2751,
3077
+ "step": 502
3078
+ },
3079
+ {
3080
+ "epoch": 15.48,
3081
+ "learning_rate": 2.5e-07,
3082
+ "loss": 1.4222,
3083
+ "step": 503
3084
+ },
3085
+ {
3086
+ "epoch": 15.51,
3087
+ "learning_rate": 2.5e-07,
3088
+ "loss": 1.3263,
3089
+ "step": 504
3090
+ },
3091
+ {
3092
+ "epoch": 15.54,
3093
+ "learning_rate": 2.5e-07,
3094
+ "loss": 1.2236,
3095
+ "step": 505
3096
+ },
3097
+ {
3098
+ "epoch": 15.57,
3099
+ "learning_rate": 2.5e-07,
3100
+ "loss": 1.3125,
3101
+ "step": 506
3102
+ },
3103
+ {
3104
+ "epoch": 15.6,
3105
+ "learning_rate": 2.5e-07,
3106
+ "loss": 1.424,
3107
+ "step": 507
3108
+ },
3109
+ {
3110
+ "epoch": 15.63,
3111
+ "learning_rate": 2.5e-07,
3112
+ "loss": 1.2231,
3113
+ "step": 508
3114
+ },
3115
+ {
3116
+ "epoch": 15.66,
3117
+ "learning_rate": 2.5e-07,
3118
+ "loss": 1.2089,
3119
+ "step": 509
3120
+ },
3121
+ {
3122
+ "epoch": 15.69,
3123
+ "learning_rate": 2.5e-07,
3124
+ "loss": 1.4663,
3125
+ "step": 510
3126
+ },
3127
+ {
3128
+ "epoch": 15.72,
3129
+ "learning_rate": 2.5e-07,
3130
+ "loss": 1.3236,
3131
+ "step": 511
3132
+ },
3133
+ {
3134
+ "epoch": 15.75,
3135
+ "learning_rate": 2.5e-07,
3136
+ "loss": 1.2133,
3137
+ "step": 512
3138
+ },
3139
+ {
3140
+ "epoch": 15.78,
3141
+ "learning_rate": 2.5e-07,
3142
+ "loss": 1.1598,
3143
+ "step": 513
3144
+ },
3145
+ {
3146
+ "epoch": 15.82,
3147
+ "learning_rate": 2.5e-07,
3148
+ "loss": 1.3023,
3149
+ "step": 514
3150
+ },
3151
+ {
3152
+ "epoch": 15.85,
3153
+ "learning_rate": 2.5e-07,
3154
+ "loss": 1.139,
3155
+ "step": 515
3156
+ },
3157
+ {
3158
+ "epoch": 15.88,
3159
+ "learning_rate": 2.5e-07,
3160
+ "loss": 1.1881,
3161
+ "step": 516
3162
+ },
3163
+ {
3164
+ "epoch": 15.91,
3165
+ "learning_rate": 2.5e-07,
3166
+ "loss": 1.1448,
3167
+ "step": 517
3168
+ },
3169
+ {
3170
+ "epoch": 15.94,
3171
+ "learning_rate": 2.5e-07,
3172
+ "loss": 1.2321,
3173
+ "step": 518
3174
+ },
3175
+ {
3176
+ "epoch": 15.97,
3177
+ "learning_rate": 2.5e-07,
3178
+ "loss": 1.2134,
3179
+ "step": 519
3180
+ },
3181
+ {
3182
+ "epoch": 16.0,
3183
+ "learning_rate": 2.5e-07,
3184
+ "loss": 1.3268,
3185
+ "step": 520
3186
+ },
3187
+ {
3188
+ "epoch": 16.03,
3189
+ "learning_rate": 2.5e-07,
3190
+ "loss": 1.3858,
3191
+ "step": 521
3192
+ },
3193
+ {
3194
+ "epoch": 16.06,
3195
+ "learning_rate": 2.5e-07,
3196
+ "loss": 1.3358,
3197
+ "step": 522
3198
+ },
3199
+ {
3200
+ "epoch": 16.09,
3201
+ "learning_rate": 2.5e-07,
3202
+ "loss": 1.2051,
3203
+ "step": 523
3204
+ },
3205
+ {
3206
+ "epoch": 16.12,
3207
+ "learning_rate": 2.5e-07,
3208
+ "loss": 1.1431,
3209
+ "step": 524
3210
+ },
3211
+ {
3212
+ "epoch": 16.15,
3213
+ "learning_rate": 2.5e-07,
3214
+ "loss": 1.2539,
3215
+ "step": 525
3216
+ },
3217
+ {
3218
+ "epoch": 16.18,
3219
+ "learning_rate": 2.5e-07,
3220
+ "loss": 1.3096,
3221
+ "step": 526
3222
+ },
3223
+ {
3224
+ "epoch": 16.22,
3225
+ "learning_rate": 2.5e-07,
3226
+ "loss": 1.1879,
3227
+ "step": 527
3228
+ },
3229
+ {
3230
+ "epoch": 16.25,
3231
+ "learning_rate": 2.5e-07,
3232
+ "loss": 1.3215,
3233
+ "step": 528
3234
+ },
3235
+ {
3236
+ "epoch": 16.28,
3237
+ "learning_rate": 2.5e-07,
3238
+ "loss": 1.2835,
3239
+ "step": 529
3240
+ },
3241
+ {
3242
+ "epoch": 16.31,
3243
+ "learning_rate": 2.5e-07,
3244
+ "loss": 1.2596,
3245
+ "step": 530
3246
+ },
3247
+ {
3248
+ "epoch": 16.34,
3249
+ "learning_rate": 2.5e-07,
3250
+ "loss": 1.2635,
3251
+ "step": 531
3252
+ },
3253
+ {
3254
+ "epoch": 16.37,
3255
+ "learning_rate": 2.5e-07,
3256
+ "loss": 1.4138,
3257
+ "step": 532
3258
+ },
3259
+ {
3260
+ "epoch": 16.4,
3261
+ "learning_rate": 2.5e-07,
3262
+ "loss": 1.2552,
3263
+ "step": 533
3264
+ },
3265
+ {
3266
+ "epoch": 16.43,
3267
+ "learning_rate": 2.5e-07,
3268
+ "loss": 1.337,
3269
+ "step": 534
3270
+ },
3271
+ {
3272
+ "epoch": 16.46,
3273
+ "learning_rate": 2.5e-07,
3274
+ "loss": 1.1408,
3275
+ "step": 535
3276
+ },
3277
+ {
3278
+ "epoch": 16.49,
3279
+ "learning_rate": 2.5e-07,
3280
+ "loss": 1.2962,
3281
+ "step": 536
3282
+ },
3283
+ {
3284
+ "epoch": 16.52,
3285
+ "learning_rate": 2.5e-07,
3286
+ "loss": 1.3547,
3287
+ "step": 537
3288
+ },
3289
+ {
3290
+ "epoch": 16.55,
3291
+ "learning_rate": 2.5e-07,
3292
+ "loss": 1.2199,
3293
+ "step": 538
3294
+ },
3295
+ {
3296
+ "epoch": 16.58,
3297
+ "learning_rate": 2.5e-07,
3298
+ "loss": 1.2924,
3299
+ "step": 539
3300
+ },
3301
+ {
3302
+ "epoch": 16.62,
3303
+ "learning_rate": 2.5e-07,
3304
+ "loss": 1.1342,
3305
+ "step": 540
3306
+ },
3307
+ {
3308
+ "epoch": 16.65,
3309
+ "learning_rate": 2.5e-07,
3310
+ "loss": 1.2628,
3311
+ "step": 541
3312
+ },
3313
+ {
3314
+ "epoch": 16.68,
3315
+ "learning_rate": 2.5e-07,
3316
+ "loss": 0.9506,
3317
+ "step": 542
3318
+ },
3319
+ {
3320
+ "epoch": 16.71,
3321
+ "learning_rate": 2.5e-07,
3322
+ "loss": 1.3052,
3323
+ "step": 543
3324
+ },
3325
+ {
3326
+ "epoch": 16.74,
3327
+ "learning_rate": 2.5e-07,
3328
+ "loss": 1.3089,
3329
+ "step": 544
3330
+ },
3331
+ {
3332
+ "epoch": 16.77,
3333
+ "learning_rate": 2.5e-07,
3334
+ "loss": 1.3776,
3335
+ "step": 545
3336
+ },
3337
+ {
3338
+ "epoch": 16.8,
3339
+ "learning_rate": 2.5e-07,
3340
+ "loss": 1.0516,
3341
+ "step": 546
3342
+ },
3343
+ {
3344
+ "epoch": 16.83,
3345
+ "learning_rate": 2.5e-07,
3346
+ "loss": 1.1433,
3347
+ "step": 547
3348
+ },
3349
+ {
3350
+ "epoch": 16.86,
3351
+ "learning_rate": 2.5e-07,
3352
+ "loss": 1.3056,
3353
+ "step": 548
3354
+ },
3355
+ {
3356
+ "epoch": 16.89,
3357
+ "learning_rate": 2.5e-07,
3358
+ "loss": 1.2652,
3359
+ "step": 549
3360
+ },
3361
+ {
3362
+ "epoch": 16.92,
3363
+ "learning_rate": 2.5e-07,
3364
+ "loss": 1.2002,
3365
+ "step": 550
3366
+ },
3367
+ {
3368
+ "epoch": 16.95,
3369
+ "learning_rate": 2.5e-07,
3370
+ "loss": 1.181,
3371
+ "step": 551
3372
+ },
3373
+ {
3374
+ "epoch": 16.98,
3375
+ "learning_rate": 2.5e-07,
3376
+ "loss": 1.0902,
3377
+ "step": 552
3378
+ },
3379
+ {
3380
+ "epoch": 17.02,
3381
+ "learning_rate": 2.5e-07,
3382
+ "loss": 1.2845,
3383
+ "step": 553
3384
+ },
3385
+ {
3386
+ "epoch": 17.05,
3387
+ "learning_rate": 2.5e-07,
3388
+ "loss": 1.2646,
3389
+ "step": 554
3390
+ },
3391
+ {
3392
+ "epoch": 17.08,
3393
+ "learning_rate": 2.5e-07,
3394
+ "loss": 1.0982,
3395
+ "step": 555
3396
+ },
3397
+ {
3398
+ "epoch": 17.11,
3399
+ "learning_rate": 2.5e-07,
3400
+ "loss": 1.1109,
3401
+ "step": 556
3402
+ },
3403
+ {
3404
+ "epoch": 17.14,
3405
+ "learning_rate": 2.5e-07,
3406
+ "loss": 1.2508,
3407
+ "step": 557
3408
+ },
3409
+ {
3410
+ "epoch": 17.17,
3411
+ "learning_rate": 2.5e-07,
3412
+ "loss": 1.2859,
3413
+ "step": 558
3414
+ },
3415
+ {
3416
+ "epoch": 17.2,
3417
+ "learning_rate": 2.5e-07,
3418
+ "loss": 0.9845,
3419
+ "step": 559
3420
+ },
3421
+ {
3422
+ "epoch": 17.23,
3423
+ "learning_rate": 2.5e-07,
3424
+ "loss": 1.1686,
3425
+ "step": 560
3426
+ },
3427
+ {
3428
+ "epoch": 17.23,
3429
+ "eval_loss": 1.173031210899353,
3430
+ "eval_runtime": 1.7371,
3431
+ "eval_samples_per_second": 4.03,
3432
+ "eval_steps_per_second": 2.303,
3433
+ "step": 560
3434
+ },
3435
+ {
3436
+ "epoch": 17.26,
3437
+ "learning_rate": 2.5e-07,
3438
+ "loss": 1.2483,
3439
+ "step": 561
3440
+ },
3441
+ {
3442
+ "epoch": 17.29,
3443
+ "learning_rate": 2.5e-07,
3444
+ "loss": 1.3438,
3445
+ "step": 562
3446
+ },
3447
+ {
3448
+ "epoch": 17.32,
3449
+ "learning_rate": 2.5e-07,
3450
+ "loss": 1.2862,
3451
+ "step": 563
3452
+ },
3453
+ {
3454
+ "epoch": 17.35,
3455
+ "learning_rate": 2.5e-07,
3456
+ "loss": 1.2464,
3457
+ "step": 564
3458
+ },
3459
+ {
3460
+ "epoch": 17.38,
3461
+ "learning_rate": 2.5e-07,
3462
+ "loss": 1.3084,
3463
+ "step": 565
3464
+ },
3465
+ {
3466
+ "epoch": 17.42,
3467
+ "learning_rate": 2.5e-07,
3468
+ "loss": 1.2382,
3469
+ "step": 566
3470
+ },
3471
+ {
3472
+ "epoch": 17.45,
3473
+ "learning_rate": 2.5e-07,
3474
+ "loss": 1.2763,
3475
+ "step": 567
3476
+ },
3477
+ {
3478
+ "epoch": 17.48,
3479
+ "learning_rate": 2.5e-07,
3480
+ "loss": 1.1901,
3481
+ "step": 568
3482
+ },
3483
+ {
3484
+ "epoch": 17.51,
3485
+ "learning_rate": 2.5e-07,
3486
+ "loss": 1.0708,
3487
+ "step": 569
3488
+ },
3489
+ {
3490
+ "epoch": 17.54,
3491
+ "learning_rate": 2.5e-07,
3492
+ "loss": 1.2879,
3493
+ "step": 570
3494
+ },
3495
+ {
3496
+ "epoch": 17.57,
3497
+ "learning_rate": 2.5e-07,
3498
+ "loss": 1.2257,
3499
+ "step": 571
3500
+ },
3501
+ {
3502
+ "epoch": 17.6,
3503
+ "learning_rate": 2.5e-07,
3504
+ "loss": 1.06,
3505
+ "step": 572
3506
+ },
3507
+ {
3508
+ "epoch": 17.63,
3509
+ "learning_rate": 2.5e-07,
3510
+ "loss": 1.3583,
3511
+ "step": 573
3512
+ },
3513
+ {
3514
+ "epoch": 17.66,
3515
+ "learning_rate": 2.5e-07,
3516
+ "loss": 1.2269,
3517
+ "step": 574
3518
+ },
3519
+ {
3520
+ "epoch": 17.69,
3521
+ "learning_rate": 2.5e-07,
3522
+ "loss": 1.3294,
3523
+ "step": 575
3524
+ },
3525
+ {
3526
+ "epoch": 17.72,
3527
+ "learning_rate": 2.5e-07,
3528
+ "loss": 1.3498,
3529
+ "step": 576
3530
+ },
3531
+ {
3532
+ "epoch": 17.75,
3533
+ "learning_rate": 2.5e-07,
3534
+ "loss": 1.0898,
3535
+ "step": 577
3536
+ },
3537
+ {
3538
+ "epoch": 17.78,
3539
+ "learning_rate": 2.5e-07,
3540
+ "loss": 1.2676,
3541
+ "step": 578
3542
+ },
3543
+ {
3544
+ "epoch": 17.82,
3545
+ "learning_rate": 2.5e-07,
3546
+ "loss": 1.3162,
3547
+ "step": 579
3548
+ },
3549
+ {
3550
+ "epoch": 17.85,
3551
+ "learning_rate": 2.5e-07,
3552
+ "loss": 1.3982,
3553
+ "step": 580
3554
+ },
3555
+ {
3556
+ "epoch": 17.88,
3557
+ "learning_rate": 2.5e-07,
3558
+ "loss": 1.3926,
3559
+ "step": 581
3560
+ },
3561
+ {
3562
+ "epoch": 17.91,
3563
+ "learning_rate": 2.5e-07,
3564
+ "loss": 1.1394,
3565
+ "step": 582
3566
+ },
3567
+ {
3568
+ "epoch": 17.94,
3569
+ "learning_rate": 2.5e-07,
3570
+ "loss": 1.2473,
3571
+ "step": 583
3572
+ },
3573
+ {
3574
+ "epoch": 17.97,
3575
+ "learning_rate": 2.5e-07,
3576
+ "loss": 1.1476,
3577
+ "step": 584
3578
+ },
3579
+ {
3580
+ "epoch": 18.0,
3581
+ "learning_rate": 2.5e-07,
3582
+ "loss": 1.226,
3583
+ "step": 585
3584
+ },
3585
+ {
3586
+ "epoch": 18.03,
3587
+ "learning_rate": 2.5e-07,
3588
+ "loss": 1.2704,
3589
+ "step": 586
3590
+ },
3591
+ {
3592
+ "epoch": 18.06,
3593
+ "learning_rate": 2.5e-07,
3594
+ "loss": 0.9477,
3595
+ "step": 587
3596
+ },
3597
+ {
3598
+ "epoch": 18.09,
3599
+ "learning_rate": 2.5e-07,
3600
+ "loss": 1.3465,
3601
+ "step": 588
3602
+ },
3603
+ {
3604
+ "epoch": 18.12,
3605
+ "learning_rate": 2.5e-07,
3606
+ "loss": 1.3294,
3607
+ "step": 589
3608
+ },
3609
+ {
3610
+ "epoch": 18.15,
3611
+ "learning_rate": 2.5e-07,
3612
+ "loss": 1.057,
3613
+ "step": 590
3614
+ },
3615
+ {
3616
+ "epoch": 18.18,
3617
+ "learning_rate": 2.5e-07,
3618
+ "loss": 1.2434,
3619
+ "step": 591
3620
+ },
3621
+ {
3622
+ "epoch": 18.22,
3623
+ "learning_rate": 2.5e-07,
3624
+ "loss": 1.2729,
3625
+ "step": 592
3626
+ },
3627
+ {
3628
+ "epoch": 18.25,
3629
+ "learning_rate": 2.5e-07,
3630
+ "loss": 1.1356,
3631
+ "step": 593
3632
+ },
3633
+ {
3634
+ "epoch": 18.28,
3635
+ "learning_rate": 2.5e-07,
3636
+ "loss": 1.1587,
3637
+ "step": 594
3638
+ },
3639
+ {
3640
+ "epoch": 18.31,
3641
+ "learning_rate": 2.5e-07,
3642
+ "loss": 1.1197,
3643
+ "step": 595
3644
+ },
3645
+ {
3646
+ "epoch": 18.34,
3647
+ "learning_rate": 2.5e-07,
3648
+ "loss": 1.1778,
3649
+ "step": 596
3650
+ },
3651
+ {
3652
+ "epoch": 18.37,
3653
+ "learning_rate": 2.5e-07,
3654
+ "loss": 1.1198,
3655
+ "step": 597
3656
+ },
3657
+ {
3658
+ "epoch": 18.4,
3659
+ "learning_rate": 2.5e-07,
3660
+ "loss": 1.3865,
3661
+ "step": 598
3662
+ },
3663
+ {
3664
+ "epoch": 18.43,
3665
+ "learning_rate": 2.5e-07,
3666
+ "loss": 1.2218,
3667
+ "step": 599
3668
+ },
3669
+ {
3670
+ "epoch": 18.46,
3671
+ "learning_rate": 2.5e-07,
3672
+ "loss": 1.0191,
3673
+ "step": 600
3674
+ },
3675
+ {
3676
+ "epoch": 18.49,
3677
+ "learning_rate": 2.5e-07,
3678
+ "loss": 1.3666,
3679
+ "step": 601
3680
+ },
3681
+ {
3682
+ "epoch": 18.52,
3683
+ "learning_rate": 2.5e-07,
3684
+ "loss": 1.3141,
3685
+ "step": 602
3686
+ },
3687
+ {
3688
+ "epoch": 18.55,
3689
+ "learning_rate": 2.5e-07,
3690
+ "loss": 1.279,
3691
+ "step": 603
3692
+ },
3693
+ {
3694
+ "epoch": 18.58,
3695
+ "learning_rate": 2.5e-07,
3696
+ "loss": 1.32,
3697
+ "step": 604
3698
+ },
3699
+ {
3700
+ "epoch": 18.62,
3701
+ "learning_rate": 2.5e-07,
3702
+ "loss": 1.3216,
3703
+ "step": 605
3704
+ },
3705
+ {
3706
+ "epoch": 18.65,
3707
+ "learning_rate": 2.5e-07,
3708
+ "loss": 1.1378,
3709
+ "step": 606
3710
+ },
3711
+ {
3712
+ "epoch": 18.68,
3713
+ "learning_rate": 2.5e-07,
3714
+ "loss": 1.174,
3715
+ "step": 607
3716
+ },
3717
+ {
3718
+ "epoch": 18.71,
3719
+ "learning_rate": 2.5e-07,
3720
+ "loss": 1.1897,
3721
+ "step": 608
3722
+ },
3723
+ {
3724
+ "epoch": 18.74,
3725
+ "learning_rate": 2.5e-07,
3726
+ "loss": 1.2227,
3727
+ "step": 609
3728
+ },
3729
+ {
3730
+ "epoch": 18.77,
3731
+ "learning_rate": 2.5e-07,
3732
+ "loss": 1.2315,
3733
+ "step": 610
3734
+ },
3735
+ {
3736
+ "epoch": 18.8,
3737
+ "learning_rate": 2.5e-07,
3738
+ "loss": 1.1637,
3739
+ "step": 611
3740
+ },
3741
+ {
3742
+ "epoch": 18.83,
3743
+ "learning_rate": 2.5e-07,
3744
+ "loss": 1.2978,
3745
+ "step": 612
3746
+ },
3747
+ {
3748
+ "epoch": 18.86,
3749
+ "learning_rate": 2.5e-07,
3750
+ "loss": 1.2103,
3751
+ "step": 613
3752
+ },
3753
+ {
3754
+ "epoch": 18.89,
3755
+ "learning_rate": 2.5e-07,
3756
+ "loss": 1.3145,
3757
+ "step": 614
3758
+ },
3759
+ {
3760
+ "epoch": 18.92,
3761
+ "learning_rate": 2.5e-07,
3762
+ "loss": 1.2807,
3763
+ "step": 615
3764
+ },
3765
+ {
3766
+ "epoch": 18.95,
3767
+ "learning_rate": 2.5e-07,
3768
+ "loss": 1.2668,
3769
+ "step": 616
3770
+ },
3771
+ {
3772
+ "epoch": 18.98,
3773
+ "learning_rate": 2.5e-07,
3774
+ "loss": 1.2986,
3775
+ "step": 617
3776
+ },
3777
+ {
3778
+ "epoch": 19.02,
3779
+ "learning_rate": 2.5e-07,
3780
+ "loss": 1.1996,
3781
+ "step": 618
3782
+ },
3783
+ {
3784
+ "epoch": 19.05,
3785
+ "learning_rate": 2.5e-07,
3786
+ "loss": 0.9905,
3787
+ "step": 619
3788
+ },
3789
+ {
3790
+ "epoch": 19.08,
3791
+ "learning_rate": 2.5e-07,
3792
+ "loss": 1.3338,
3793
+ "step": 620
3794
+ },
3795
+ {
3796
+ "epoch": 19.11,
3797
+ "learning_rate": 2.5e-07,
3798
+ "loss": 1.0955,
3799
+ "step": 621
3800
+ },
3801
+ {
3802
+ "epoch": 19.14,
3803
+ "learning_rate": 2.5e-07,
3804
+ "loss": 1.1721,
3805
+ "step": 622
3806
+ },
3807
+ {
3808
+ "epoch": 19.17,
3809
+ "learning_rate": 2.5e-07,
3810
+ "loss": 1.2088,
3811
+ "step": 623
3812
+ },
3813
+ {
3814
+ "epoch": 19.2,
3815
+ "learning_rate": 2.5e-07,
3816
+ "loss": 1.3623,
3817
+ "step": 624
3818
+ },
3819
+ {
3820
+ "epoch": 19.23,
3821
+ "learning_rate": 2.5e-07,
3822
+ "loss": 1.0578,
3823
+ "step": 625
3824
+ },
3825
+ {
3826
+ "epoch": 19.26,
3827
+ "learning_rate": 2.5e-07,
3828
+ "loss": 1.0765,
3829
+ "step": 626
3830
+ },
3831
+ {
3832
+ "epoch": 19.29,
3833
+ "learning_rate": 2.5e-07,
3834
+ "loss": 1.3624,
3835
+ "step": 627
3836
+ },
3837
+ {
3838
+ "epoch": 19.32,
3839
+ "learning_rate": 2.5e-07,
3840
+ "loss": 1.1778,
3841
+ "step": 628
3842
+ },
3843
+ {
3844
+ "epoch": 19.35,
3845
+ "learning_rate": 2.5e-07,
3846
+ "loss": 1.2267,
3847
+ "step": 629
3848
+ },
3849
+ {
3850
+ "epoch": 19.38,
3851
+ "learning_rate": 2.5e-07,
3852
+ "loss": 1.2311,
3853
+ "step": 630
3854
+ },
3855
+ {
3856
+ "epoch": 19.42,
3857
+ "learning_rate": 2.5e-07,
3858
+ "loss": 1.3226,
3859
+ "step": 631
3860
+ },
3861
+ {
3862
+ "epoch": 19.45,
3863
+ "learning_rate": 2.5e-07,
3864
+ "loss": 1.2294,
3865
+ "step": 632
3866
+ },
3867
+ {
3868
+ "epoch": 19.48,
3869
+ "learning_rate": 2.5e-07,
3870
+ "loss": 1.0192,
3871
+ "step": 633
3872
+ },
3873
+ {
3874
+ "epoch": 19.51,
3875
+ "learning_rate": 2.5e-07,
3876
+ "loss": 1.2559,
3877
+ "step": 634
3878
+ },
3879
+ {
3880
+ "epoch": 19.54,
3881
+ "learning_rate": 2.5e-07,
3882
+ "loss": 1.2497,
3883
+ "step": 635
3884
+ },
3885
+ {
3886
+ "epoch": 19.57,
3887
+ "learning_rate": 2.5e-07,
3888
+ "loss": 1.4026,
3889
+ "step": 636
3890
+ },
3891
+ {
3892
+ "epoch": 19.6,
3893
+ "learning_rate": 2.5e-07,
3894
+ "loss": 1.2551,
3895
+ "step": 637
3896
+ },
3897
+ {
3898
+ "epoch": 19.63,
3899
+ "learning_rate": 2.5e-07,
3900
+ "loss": 1.2695,
3901
+ "step": 638
3902
+ },
3903
+ {
3904
+ "epoch": 19.66,
3905
+ "learning_rate": 2.5e-07,
3906
+ "loss": 1.2047,
3907
+ "step": 639
3908
+ },
3909
+ {
3910
+ "epoch": 19.69,
3911
+ "learning_rate": 2.5e-07,
3912
+ "loss": 1.1506,
3913
+ "step": 640
3914
+ },
3915
+ {
3916
+ "epoch": 19.69,
3917
+ "eval_loss": 1.161481261253357,
3918
+ "eval_runtime": 1.7425,
3919
+ "eval_samples_per_second": 4.017,
3920
+ "eval_steps_per_second": 2.296,
3921
+ "step": 640
3922
+ },
3923
+ {
3924
+ "epoch": 19.72,
3925
+ "learning_rate": 2.5e-07,
3926
+ "loss": 1.2597,
3927
+ "step": 641
3928
+ },
3929
+ {
3930
+ "epoch": 19.75,
3931
+ "learning_rate": 2.5e-07,
3932
+ "loss": 1.1908,
3933
+ "step": 642
3934
+ },
3935
+ {
3936
+ "epoch": 19.78,
3937
+ "learning_rate": 2.5e-07,
3938
+ "loss": 1.2338,
3939
+ "step": 643
3940
+ },
3941
+ {
3942
+ "epoch": 19.82,
3943
+ "learning_rate": 2.5e-07,
3944
+ "loss": 1.31,
3945
+ "step": 644
3946
+ },
3947
+ {
3948
+ "epoch": 19.85,
3949
+ "learning_rate": 2.5e-07,
3950
+ "loss": 1.0713,
3951
+ "step": 645
3952
+ },
3953
+ {
3954
+ "epoch": 19.88,
3955
+ "learning_rate": 2.5e-07,
3956
+ "loss": 1.2727,
3957
+ "step": 646
3958
+ },
3959
+ {
3960
+ "epoch": 19.91,
3961
+ "learning_rate": 2.5e-07,
3962
+ "loss": 1.2029,
3963
+ "step": 647
3964
+ },
3965
+ {
3966
+ "epoch": 19.94,
3967
+ "learning_rate": 2.5e-07,
3968
+ "loss": 1.3007,
3969
+ "step": 648
3970
+ },
3971
+ {
3972
+ "epoch": 19.97,
3973
+ "learning_rate": 2.5e-07,
3974
+ "loss": 1.3173,
3975
+ "step": 649
3976
+ },
3977
+ {
3978
+ "epoch": 20.0,
3979
+ "learning_rate": 2.5e-07,
3980
+ "loss": 1.2024,
3981
+ "step": 650
3982
+ },
3983
+ {
3984
+ "epoch": 20.03,
3985
+ "learning_rate": 2.5e-07,
3986
+ "loss": 1.1753,
3987
+ "step": 651
3988
+ },
3989
+ {
3990
+ "epoch": 20.06,
3991
+ "learning_rate": 2.5e-07,
3992
+ "loss": 1.273,
3993
+ "step": 652
3994
+ },
3995
+ {
3996
+ "epoch": 20.09,
3997
+ "learning_rate": 2.5e-07,
3998
+ "loss": 1.2252,
3999
+ "step": 653
4000
+ },
4001
+ {
4002
+ "epoch": 20.12,
4003
+ "learning_rate": 2.5e-07,
4004
+ "loss": 1.2582,
4005
+ "step": 654
4006
+ },
4007
+ {
4008
+ "epoch": 20.15,
4009
+ "learning_rate": 2.5e-07,
4010
+ "loss": 1.2634,
4011
+ "step": 655
4012
+ },
4013
+ {
4014
+ "epoch": 20.18,
4015
+ "learning_rate": 2.5e-07,
4016
+ "loss": 1.2168,
4017
+ "step": 656
4018
+ },
4019
+ {
4020
+ "epoch": 20.22,
4021
+ "learning_rate": 2.5e-07,
4022
+ "loss": 1.2868,
4023
+ "step": 657
4024
+ },
4025
+ {
4026
+ "epoch": 20.25,
4027
+ "learning_rate": 2.5e-07,
4028
+ "loss": 1.2229,
4029
+ "step": 658
4030
+ },
4031
+ {
4032
+ "epoch": 20.28,
4033
+ "learning_rate": 2.5e-07,
4034
+ "loss": 1.0799,
4035
+ "step": 659
4036
+ },
4037
+ {
4038
+ "epoch": 20.31,
4039
+ "learning_rate": 2.5e-07,
4040
+ "loss": 1.187,
4041
+ "step": 660
4042
+ },
4043
+ {
4044
+ "epoch": 20.34,
4045
+ "learning_rate": 2.5e-07,
4046
+ "loss": 1.3681,
4047
+ "step": 661
4048
+ },
4049
+ {
4050
+ "epoch": 20.37,
4051
+ "learning_rate": 2.5e-07,
4052
+ "loss": 1.1951,
4053
+ "step": 662
4054
+ },
4055
+ {
4056
+ "epoch": 20.4,
4057
+ "learning_rate": 2.5e-07,
4058
+ "loss": 1.0643,
4059
+ "step": 663
4060
+ },
4061
+ {
4062
+ "epoch": 20.43,
4063
+ "learning_rate": 2.5e-07,
4064
+ "loss": 1.2073,
4065
+ "step": 664
4066
+ },
4067
+ {
4068
+ "epoch": 20.46,
4069
+ "learning_rate": 2.5e-07,
4070
+ "loss": 1.2797,
4071
+ "step": 665
4072
+ },
4073
+ {
4074
+ "epoch": 20.49,
4075
+ "learning_rate": 2.5e-07,
4076
+ "loss": 1.3999,
4077
+ "step": 666
4078
+ },
4079
+ {
4080
+ "epoch": 20.52,
4081
+ "learning_rate": 2.5e-07,
4082
+ "loss": 1.2501,
4083
+ "step": 667
4084
+ },
4085
+ {
4086
+ "epoch": 20.55,
4087
+ "learning_rate": 2.5e-07,
4088
+ "loss": 1.2163,
4089
+ "step": 668
4090
+ },
4091
+ {
4092
+ "epoch": 20.58,
4093
+ "learning_rate": 2.5e-07,
4094
+ "loss": 1.3067,
4095
+ "step": 669
4096
+ },
4097
+ {
4098
+ "epoch": 20.62,
4099
+ "learning_rate": 2.5e-07,
4100
+ "loss": 1.1854,
4101
+ "step": 670
4102
+ },
4103
+ {
4104
+ "epoch": 20.65,
4105
+ "learning_rate": 2.5e-07,
4106
+ "loss": 1.1188,
4107
+ "step": 671
4108
+ },
4109
+ {
4110
+ "epoch": 20.68,
4111
+ "learning_rate": 2.5e-07,
4112
+ "loss": 1.2344,
4113
+ "step": 672
4114
+ },
4115
+ {
4116
+ "epoch": 20.71,
4117
+ "learning_rate": 2.5e-07,
4118
+ "loss": 1.2431,
4119
+ "step": 673
4120
+ },
4121
+ {
4122
+ "epoch": 20.74,
4123
+ "learning_rate": 2.5e-07,
4124
+ "loss": 1.1848,
4125
+ "step": 674
4126
+ },
4127
+ {
4128
+ "epoch": 20.77,
4129
+ "learning_rate": 2.5e-07,
4130
+ "loss": 1.3042,
4131
+ "step": 675
4132
+ },
4133
+ {
4134
+ "epoch": 20.8,
4135
+ "learning_rate": 2.5e-07,
4136
+ "loss": 1.121,
4137
+ "step": 676
4138
+ },
4139
+ {
4140
+ "epoch": 20.83,
4141
+ "learning_rate": 2.5e-07,
4142
+ "loss": 1.1777,
4143
+ "step": 677
4144
+ },
4145
+ {
4146
+ "epoch": 20.86,
4147
+ "learning_rate": 2.5e-07,
4148
+ "loss": 1.2183,
4149
+ "step": 678
4150
+ },
4151
+ {
4152
+ "epoch": 20.89,
4153
+ "learning_rate": 2.5e-07,
4154
+ "loss": 1.1327,
4155
+ "step": 679
4156
+ },
4157
+ {
4158
+ "epoch": 20.92,
4159
+ "learning_rate": 2.5e-07,
4160
+ "loss": 1.1136,
4161
+ "step": 680
4162
+ },
4163
+ {
4164
+ "epoch": 20.95,
4165
+ "learning_rate": 2.5e-07,
4166
+ "loss": 1.2761,
4167
+ "step": 681
4168
+ },
4169
+ {
4170
+ "epoch": 20.98,
4171
+ "learning_rate": 2.5e-07,
4172
+ "loss": 1.079,
4173
+ "step": 682
4174
+ },
4175
+ {
4176
+ "epoch": 21.02,
4177
+ "learning_rate": 2.5e-07,
4178
+ "loss": 1.2263,
4179
+ "step": 683
4180
+ },
4181
+ {
4182
+ "epoch": 21.05,
4183
+ "learning_rate": 2.5e-07,
4184
+ "loss": 1.2507,
4185
+ "step": 684
4186
+ },
4187
+ {
4188
+ "epoch": 21.08,
4189
+ "learning_rate": 2.5e-07,
4190
+ "loss": 1.1574,
4191
+ "step": 685
4192
+ },
4193
+ {
4194
+ "epoch": 21.11,
4195
+ "learning_rate": 2.5e-07,
4196
+ "loss": 1.0829,
4197
+ "step": 686
4198
+ },
4199
+ {
4200
+ "epoch": 21.14,
4201
+ "learning_rate": 2.5e-07,
4202
+ "loss": 1.2645,
4203
+ "step": 687
4204
+ },
4205
+ {
4206
+ "epoch": 21.17,
4207
+ "learning_rate": 2.5e-07,
4208
+ "loss": 1.2632,
4209
+ "step": 688
4210
+ },
4211
+ {
4212
+ "epoch": 21.2,
4213
+ "learning_rate": 2.5e-07,
4214
+ "loss": 1.2332,
4215
+ "step": 689
4216
+ },
4217
+ {
4218
+ "epoch": 21.23,
4219
+ "learning_rate": 2.5e-07,
4220
+ "loss": 1.2069,
4221
+ "step": 690
4222
+ },
4223
+ {
4224
+ "epoch": 21.26,
4225
+ "learning_rate": 2.5e-07,
4226
+ "loss": 1.2087,
4227
+ "step": 691
4228
+ },
4229
+ {
4230
+ "epoch": 21.29,
4231
+ "learning_rate": 2.5e-07,
4232
+ "loss": 1.1768,
4233
+ "step": 692
4234
+ },
4235
+ {
4236
+ "epoch": 21.32,
4237
+ "learning_rate": 2.5e-07,
4238
+ "loss": 1.0126,
4239
+ "step": 693
4240
+ },
4241
+ {
4242
+ "epoch": 21.35,
4243
+ "learning_rate": 2.5e-07,
4244
+ "loss": 1.3168,
4245
+ "step": 694
4246
+ },
4247
+ {
4248
+ "epoch": 21.38,
4249
+ "learning_rate": 2.5e-07,
4250
+ "loss": 1.0629,
4251
+ "step": 695
4252
+ },
4253
+ {
4254
+ "epoch": 21.42,
4255
+ "learning_rate": 2.5e-07,
4256
+ "loss": 1.1156,
4257
+ "step": 696
4258
+ },
4259
+ {
4260
+ "epoch": 21.45,
4261
+ "learning_rate": 2.5e-07,
4262
+ "loss": 1.2308,
4263
+ "step": 697
4264
+ },
4265
+ {
4266
+ "epoch": 21.48,
4267
+ "learning_rate": 2.5e-07,
4268
+ "loss": 1.2688,
4269
+ "step": 698
4270
+ },
4271
+ {
4272
+ "epoch": 21.51,
4273
+ "learning_rate": 2.5e-07,
4274
+ "loss": 1.1114,
4275
+ "step": 699
4276
+ },
4277
+ {
4278
+ "epoch": 21.54,
4279
+ "learning_rate": 2.5e-07,
4280
+ "loss": 1.0432,
4281
+ "step": 700
4282
+ },
4283
+ {
4284
+ "epoch": 21.57,
4285
+ "learning_rate": 2.5e-07,
4286
+ "loss": 1.2938,
4287
+ "step": 701
4288
+ },
4289
+ {
4290
+ "epoch": 21.6,
4291
+ "learning_rate": 2.5e-07,
4292
+ "loss": 1.2673,
4293
+ "step": 702
4294
+ },
4295
+ {
4296
+ "epoch": 21.63,
4297
+ "learning_rate": 2.5e-07,
4298
+ "loss": 1.2795,
4299
+ "step": 703
4300
+ },
4301
+ {
4302
+ "epoch": 21.66,
4303
+ "learning_rate": 2.5e-07,
4304
+ "loss": 1.1992,
4305
+ "step": 704
4306
+ },
4307
+ {
4308
+ "epoch": 21.69,
4309
+ "learning_rate": 2.5e-07,
4310
+ "loss": 1.2114,
4311
+ "step": 705
4312
+ },
4313
+ {
4314
+ "epoch": 21.72,
4315
+ "learning_rate": 2.5e-07,
4316
+ "loss": 1.1559,
4317
+ "step": 706
4318
+ },
4319
+ {
4320
+ "epoch": 21.75,
4321
+ "learning_rate": 2.5e-07,
4322
+ "loss": 1.1923,
4323
+ "step": 707
4324
+ },
4325
+ {
4326
+ "epoch": 21.78,
4327
+ "learning_rate": 2.5e-07,
4328
+ "loss": 1.135,
4329
+ "step": 708
4330
+ },
4331
+ {
4332
+ "epoch": 21.82,
4333
+ "learning_rate": 2.5e-07,
4334
+ "loss": 1.1937,
4335
+ "step": 709
4336
+ },
4337
+ {
4338
+ "epoch": 21.85,
4339
+ "learning_rate": 2.5e-07,
4340
+ "loss": 1.3328,
4341
+ "step": 710
4342
+ },
4343
+ {
4344
+ "epoch": 21.88,
4345
+ "learning_rate": 2.5e-07,
4346
+ "loss": 1.2513,
4347
+ "step": 711
4348
+ },
4349
+ {
4350
+ "epoch": 21.91,
4351
+ "learning_rate": 2.5e-07,
4352
+ "loss": 1.197,
4353
+ "step": 712
4354
+ },
4355
+ {
4356
+ "epoch": 21.94,
4357
+ "learning_rate": 2.5e-07,
4358
+ "loss": 1.0483,
4359
+ "step": 713
4360
+ },
4361
+ {
4362
+ "epoch": 21.97,
4363
+ "learning_rate": 2.5e-07,
4364
+ "loss": 1.3072,
4365
+ "step": 714
4366
+ },
4367
+ {
4368
+ "epoch": 22.0,
4369
+ "learning_rate": 2.5e-07,
4370
+ "loss": 1.2929,
4371
+ "step": 715
4372
+ }
4373
+ ],
4374
+ "logging_steps": 1,
4375
+ "max_steps": 1600,
4376
+ "num_input_tokens_seen": 0,
4377
+ "num_train_epochs": 50,
4378
+ "save_steps": 65,
4379
+ "total_flos": 1.1332584807727104e+17,
4380
+ "trial_name": null,
4381
+ "trial_params": null
4382
+ }
checkpoint-715/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c358b1c810a69ea433dd5d29f474567432f37c0574609fc5626a2db2ddb233f
3
+ size 4603
checkpoint-975/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./NeverSleep_Noromaid-13b-v0.1.1/
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: True
208
+ - load_in_4bit: False
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: fp4
214
+ - bnb_4bit_use_double_quant: False
215
+ - bnb_4bit_compute_dtype: float32
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-975/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./NeverSleep_Noromaid-13b-v0.1.1/",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 512,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 256,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "down_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-975/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8b9f37d21e76d17c9d2df4aafd722bc1cd925ed48bd9e23242e3c69676019cb
3
+ size 4005637552
checkpoint-975/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e99ff80a14dc14551b9b10f4b22228f42357d01fbbecd2c8d9507bbef93627b
3
+ size 2007352159
checkpoint-975/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bae2602d66e11cf54949dce7bd9fa50f05836ba53bf914029ecbb7e6d6fb1e7
3
+ size 14575
checkpoint-975/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:585ac4cbd0d7887c969d6a27c976182c94bea53c3b830f86879cda818834992a
3
+ size 627
checkpoint-975/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-975/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c358b1c810a69ea433dd5d29f474567432f37c0574609fc5626a2db2ddb233f
3
+ size 4603
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./NeverSleep_Noromaid-13b-v0.1.1/",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 13824,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 40,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "quantization_config": {
22
+ "bnb_4bit_compute_dtype": "float32",
23
+ "bnb_4bit_quant_type": "fp4",
24
+ "bnb_4bit_use_double_quant": false,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": false,
30
+ "load_in_8bit": true,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.36.0.dev0",
39
+ "use_cache": false,
40
+ "vocab_size": 32001
41
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": true,
42
+ "model_max_length": 2048,
43
+ "pad_token": "[PAD]",
44
+ "padding_side": "left",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "trust_remote_code": false,
49
+ "unk_token": "<unk>",
50
+ "use_default_system_prompt": false,
51
+ "use_fast": true
52
+ }