Text Generation
Transformers
PyTorch
llama
Not-For-All-Audiences
nsfw
text-generation-inference
Inference Endpoints
File size: 1,961 Bytes
729be2b 44f4735 729be2b 44f4735 269fa64 44f4735 269fa64 44f4735 d118152 7299e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: cc-by-nc-4.0
tags:
- not-for-all-audiences
- nsfw
---
[HIGHLY EXPERIMENTAL]
Just try it for a good laugh. Need testing.
```shell
The plan :
Open-Orca/OpenOrcaxOpenChat-Preview2-13B
PygmalionAI/pygmalion-2-13b
Undi95/MLewd-L2-13B-v2-3
jondurbin/spicyboros-13b-2.2
lemonilia/limarp-llama2-v2
Step 1: Merge OpenOrcaxOpenChat-Preview2-13B with pygmalion-2-13b
=> OpenOrcaPyg2
Step 2: Merge MLewd with Spicyboros
=> MLewdBorosPlus
Step 3: In the layer side, replace the layer 0 to 8 with MLewd, and the layer 16 to 20 with Spicyboros of the first merge
=> OpenOrcaPyg2-Layered
Step 4: In the layer side, replace the layer 0 to 8 with MLewd, and the layer 16 to 20 with Spicyboros of the second merge
=> MLewdBorosPlus-Layered
Step 5: Merge OpenOrcaPyg2-Layered with MLewdBorosPlus-Layered
=> OpenRPBase
Step 6: Apply Limarp2 at 0.5 weight at the end
=> OpenRP
Goal: making Orca a RP model with Pyg2 dataset and MLewd+Spicyboros 100% layer accross the merge and avoid censoring
It will be diluted to ~25% in other layer, SLERP do the dirty job
The LoRA is here to redirect to RP writing
```
Don't ask me why this model work. I'm a blind scientist. It seems a little obsessed with the game "Garry's mod" tho. Be patient with him.
SuperCOT applied : https://huggingface.co/Undi95/OpenRP-13B-SuperCOT
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Undi95__OpenRP-13B)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 53.25 |
| ARC (25-shot) | 62.12 |
| HellaSwag (10-shot) | 82.6 |
| MMLU (5-shot) | 57.5 |
| TruthfulQA (0-shot) | 48.29 |
| Winogrande (5-shot) | 76.01 |
| GSM8K (5-shot) | 12.89 |
| DROP (3-shot) | 33.38 |
|