sino
commited on
Commit
·
99f673d
1
Parent(s):
8fb04ef
Update README.md
Browse files
README.md
CHANGED
@@ -40,8 +40,8 @@ device = model.device
|
|
40 |
# sample rate: 16k
|
41 |
music_path = '/path/to/music.wav'
|
42 |
|
43 |
-
# extract logmel spectrogram
|
44 |
-
# 1. parameters
|
45 |
class FFT_parameters:
|
46 |
sample_rate = 16000
|
47 |
window_size = 400
|
@@ -51,7 +51,7 @@ class FFT_parameters:
|
|
51 |
f_min = 50
|
52 |
f_max = 8000
|
53 |
prms = FFT_parameters()
|
54 |
-
# 2. extract
|
55 |
import nnAudio.Spectrogram
|
56 |
import librosa
|
57 |
to_spec = nnAudio.Spectrogram.MelSpectrogram(
|
@@ -69,7 +69,7 @@ to_spec = nnAudio.Spectrogram.MelSpectrogram(
|
|
69 |
wav, ori_sr = librosa.load(music_path, mono=True, sr=prms.sample_rate)
|
70 |
lms = to_spec(torch.tensor(wav))
|
71 |
lms = (lms + torch.finfo().eps).log().to(device)
|
72 |
-
# 3. processing
|
73 |
import os
|
74 |
from torch.nn.utils.rnn import pad_sequence
|
75 |
import random
|
@@ -83,7 +83,7 @@ lms = lms.numpy()
|
|
83 |
for trans in transforms:
|
84 |
lms = trans(lms)
|
85 |
|
86 |
-
# template of input
|
87 |
input = dict()
|
88 |
input['filenames'] = [music_path.split('/')[-1]]
|
89 |
input['ans_crds'] = [0]
|
@@ -91,7 +91,7 @@ input['audio_crds'] = [0]
|
|
91 |
input['attention_mask'] = torch.tensor([[1, 1, 1, 1, 1]]).to(device)
|
92 |
input['input_ids'] = torch.tensor([[1, 694, 5777, 683, 13]]).to(device)
|
93 |
input['spectrogram'] = torch.from_numpy(lms).unsqueez(dim=0).to(device)
|
94 |
-
# generation
|
95 |
model.eval()
|
96 |
gen_ids = model.forward_test(input)
|
97 |
gen_text = model.neck.tokenizer.batch_decode(gen_ids.clip(0))
|
|
|
40 |
# sample rate: 16k
|
41 |
music_path = '/path/to/music.wav'
|
42 |
|
43 |
+
# 1. extract logmel spectrogram
|
44 |
+
# 1.1 parameters
|
45 |
class FFT_parameters:
|
46 |
sample_rate = 16000
|
47 |
window_size = 400
|
|
|
51 |
f_min = 50
|
52 |
f_max = 8000
|
53 |
prms = FFT_parameters()
|
54 |
+
# 1.2. extract
|
55 |
import nnAudio.Spectrogram
|
56 |
import librosa
|
57 |
to_spec = nnAudio.Spectrogram.MelSpectrogram(
|
|
|
69 |
wav, ori_sr = librosa.load(music_path, mono=True, sr=prms.sample_rate)
|
70 |
lms = to_spec(torch.tensor(wav))
|
71 |
lms = (lms + torch.finfo().eps).log().to(device)
|
72 |
+
# 1.3. processing
|
73 |
import os
|
74 |
from torch.nn.utils.rnn import pad_sequence
|
75 |
import random
|
|
|
83 |
for trans in transforms:
|
84 |
lms = trans(lms)
|
85 |
|
86 |
+
# 2. template of input
|
87 |
input = dict()
|
88 |
input['filenames'] = [music_path.split('/')[-1]]
|
89 |
input['ans_crds'] = [0]
|
|
|
91 |
input['attention_mask'] = torch.tensor([[1, 1, 1, 1, 1]]).to(device)
|
92 |
input['input_ids'] = torch.tensor([[1, 694, 5777, 683, 13]]).to(device)
|
93 |
input['spectrogram'] = torch.from_numpy(lms).unsqueez(dim=0).to(device)
|
94 |
+
# 3. generation
|
95 |
model.eval()
|
96 |
gen_ids = model.forward_test(input)
|
97 |
gen_text = model.neck.tokenizer.batch_decode(gen_ids.clip(0))
|