DavidGF commited on
Commit
d86f3cf
·
verified ·
1 Parent(s): 07253e2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ language:
4
+ - de
5
+ - en
6
+ - it
7
+ - fr
8
+ - pt
9
+ - es
10
+ tags:
11
+ - spectrum
12
+ ---
13
+
14
+ ![SauerkrautLM-gemma-2-2b-it]( https://vago-solutions.ai/wp-content/uploads/2024/08/SauerkrautLM-gemma-2-2b-it.png "SauerkrautLM-gemma-2-2b-it")
15
+ ## VAGO solutions SauerkrautLM-gemma-2-2b-it
16
+
17
+ **Fine-tuned Model** - *to showcase the potential of resource-efficient Fine-Tuning of Large Language Models using **Spectrum Fine-Tuning***
18
+
19
+ Introducing **SauerkrautLM-gemma-2-2b-it** – our Sauerkraut version of the powerful [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)!
20
+
21
+ - Fine-tuning on German-English data with [**Spectrum**](https://github.com/cognitivecomputations/spectrum) Fine-Tuning **targeting 25% of the layers.**
22
+ - Utilized unique German-English Sauerkraut Mix v2
23
+ - Implemented bespoke, precision-engineered fine-tuning approach
24
+
25
+ # Table of Contents
26
+ 1. [Overview of all SauerkrautLM-gemma-2-2b-it](#all-SauerkrautLM-gemma-2-2b-it)
27
+ 2. [Model Details](#model-details)
28
+ - [Training procedure](#training-procedure)
29
+ 3. [Evaluation](#evaluation)
30
+ 5. [Disclaimer](#disclaimer)
31
+ 6. [Contact](#contact)
32
+ 7. [Collaborations](#collaborations)
33
+ 8. [Acknowledgement](#acknowledgement)
34
+
35
+ ## All SauerkrautLM-gemma-2-2b-it
36
+
37
+ | Model | HF | EXL2 | GGUF | AWQ |
38
+ |-------|-------|-------|-------|-------|
39
+ | SauerkrautLM-gemma-2-2b-it | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-gemma-2-2b-it) | coming soon | coming soon | coming soon |
40
+
41
+ ## Model Details
42
+ **SauerkrautLM-gemma-2-2b-it**
43
+ - **Model Type:** SauerkrautLM-gemma-2-2b-it is a fine-tuned Model based on [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)
44
+ - **Language(s):** German, English
45
+ - **License:** gemma
46
+ - **Contact:** [VAGO solutions](https://vago-solutions.ai)
47
+
48
+ ## Training Procedure
49
+
50
+ This model showcases the potential of resource-efficient fine-tuning of large language models using Spectrum Fine-Tuning. Here's a brief on the procedure:
51
+
52
+ **Fine-tuning on German-English Data**:
53
+
54
+ - Utilized Spectrum Fine-Tuning, targeting 25% of the model's layers
55
+ - Introduced the model to a unique German-English Sauerkraut Mix v2
56
+ - Implemented a bespoke, precision-engineered fine-tuning approach
57
+
58
+ **Sauerkraut Mix v2**:
59
+
60
+ - Premium Dataset for Language Models, focusing on German and English
61
+ - Meticulously selected, high-quality dataset combinations
62
+ - Cutting-edge synthetic datasets created using proprietary, high-precision generation techniques
63
+
64
+ ## Objective and Results
65
+
66
+ The primary goal of this training was to demonstrate that with Spectrum Fine-Tuning targeting 25% of the layers, a small 2 billion parameter model can enhance the capabilities while using a fraction of the resources of the classic fine-tuning approach.
67
+
68
+ The model has significantly improved skills in instruction-following, common-sense reasoning and problem-solving. Further it improved in multilinguality by performing noticably better in MMLU, not only in German and English, but also in many other languages.
69
+
70
+ **Spectrum Fine-Tuning can efficiently enhance a large language model's capabilities while preserving the majority of its previously acquired knowledge.**
71
+
72
+ ## Evaluation
73
+
74
+ **AGIEVAL**
75
+ ![SauerkrautLM-gemma-2-2b-it-AGIEVAL]( https://vago-solutions.ai/wp-content/uploads/2024/08/AGIeval-gemma2.png "SauerkrautLM-gemma-2-2b-it-AGIEVAL")
76
+
77
+ **GPT4ALL**
78
+ ![SauerkrautLM-gemma-2-2b-it-GPT4ALL]( https://vago-solutions.ai/wp-content/uploads/2024/08/GPT4ALL-gemma2.png "SauerkrautLM-gemma-2-2b-it-GPT4ALL")
79
+
80
+ **TRUTHFULQA**
81
+ ![SauerkrautLM-gemma-2-2b-it-TRUTHFULQA]( https://vago-solutions.ai/wp-content/uploads/2024/08/TQA-gemma-gemma2.png "SauerkrautLM-gemma-2-2b-it-TRUTHFULQA")
82
+
83
+ **OPENLEADERBOARD 2**
84
+ ![SauerkrautLM-gemma-2-2b-it-OPENLEADERBOARD]( https://vago-solutions.ai/wp-content/uploads/2024/08/HF2-gemma2-1.png "SauerkrautLM-gemma-2-2b-it-OPENLEADERBOARD")
85
+
86
+ **MMLU 5-shot**
87
+ ![SauerkrautLM-gemma-2-2b-it-MMLU-5shot]( https://vago-solutions.ai/wp-content/uploads/2024/08/MMLU-gemma2.png "SauerkrautLM-gemma-2-2b-it-MMLU-5shot")
88
+
89
+ Please be informed that our benchmark results in absolute numbers are different from the Hugging Face Leaderboard, due to different setups in our benchmark evaluation pipeline. However, the relative differences remain the same.
90
+
91
+ ## Disclaimer
92
+ We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
93
+
94
+ ## Contact
95
+ If you are interested in customized LLMs for business applications, please get in contact with us via our website. We are also grateful for your feedback and suggestions.
96
+
97
+ ## Collaborations
98
+ We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
99
+
100
+ ## Acknowledgement
101
+ Many thanks to [google](https://huggingface.co/google) for providing such a valuable model to the Open-Source community.