File size: 5,965 Bytes
332c99d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f062a15
332c99d
 
8274e28
332c99d
de229f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8656b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332c99d
 
 
 
8274e28
 
 
332c99d
 
 
8274e28
332c99d
 
 
 
6cb5253
332c99d
9452bc7
 
332c99d
 
6cb5253
332c99d
 
 
 
 
fefad69
332c99d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb5253
332c99d
 
 
f600055
332c99d
 
8274e28
332c99d
8274e28
332c99d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
language:
- en
pipeline_tag: text-generation
tags:
- enigma
- valiant
- valiant-labs
- llama
- llama-3.1
- llama-3.1-instruct
- llama-3.1-instruct-8b
- llama-3
- llama-3-instruct
- llama-3-instruct-8b
- 8b
- code
- code-instruct
- python
- conversational
- chat
- instruct
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- sequelbox/Tachibana
- sequelbox/Supernova
model_type: llama
model-index:
- name: Llama3.1-8B-Enigma
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-Shot)
      type: winogrande
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.27
      name: acc
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 55.39
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Enigma
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 28.47
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Enigma
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 10.12
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Enigma
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.57
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Enigma
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.41
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Enigma
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.2
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Enigma
      name: Open LLM Leaderboard
license: llama3.1
---


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64f267a8a4f79a118e0fcc89/it7MY5MyLCLpFQev5dUis.jpeg)


Enigma is a code-instruct model built on Llama 3.1 8b.
- High quality code instruct performance within the Llama 3 Instruct chat format
- Finetuned on synthetic code-instruct data generated with Llama 3.1 405b. [Find the current version of the dataset here!](https://huggingface.co/datasets/sequelbox/Tachibana)
- Overall chat performance supplemented with [generalist synthetic data.](https://huggingface.co/datasets/sequelbox/Supernova)


## Version

This is the **2024-10-02** release of Enigma for Llama 3.1 8b, enhancing code-instruct and general chat capabilities.

[**Enigma is now available for Llama 3.2 3b** - get it here!](https://huggingface.co/ValiantLabs/Llama3.2-3B-Enigma)

Help us and recommend Enigma to your friends! We're excited for more Enigma releases in the future. 

Right now, we're working on more new Build Tools to come very soon, built on Llama 3.1 and 3.2 :)


## Prompting Guide
Enigma uses the [Llama 3.1 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) prompt format. The example script below can be used as a starting point for general chat:

```python
import transformers
import torch

model_id = "ValiantLabs/Llama3.1-8B-Enigma"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are Enigma, a highly capable code assistant."},
    {"role": "user", "content": "Can you explain virtualization to me?"}
]

outputs = pipeline(
    messages,
    max_new_tokens=2048,
)

print(outputs[0]["generated_text"][-1])
```

## The Model
Enigma is built on top of Llama 3.1 8b Instruct, using high quality code-instruct data and general chat data in Llama 3.1 Instruct prompt style to supplement overall performance.

Our current version of Enigma is trained on code-instruct data from [sequelbox/Tachibana](https://huggingface.co/datasets/sequelbox/Tachibana) and general chat data from [sequelbox/Supernova.](https://huggingface.co/datasets/sequelbox/Supernova)


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg)


Enigma is created by [Valiant Labs.](http://valiantlabs.ca/)

[Check out our HuggingFace page for Shining Valiant 2 and our other Build Tools models for creators!](https://huggingface.co/ValiantLabs)

[Follow us on X for updates on our models!](https://twitter.com/valiant_labs)

We care about open source.
For everyone to use.

We encourage others to finetune further from our models.