--- language: - vi license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm-roberta-large_baseline_words results: [] --- # xlm-roberta-large_baseline_words This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the covid19_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0850 - Patient Id: 0.9840 - Name: 0.7711 - Gender: 0.9767 - Age: 0.9821 - Job: 0.8062 - Location: 0.9570 - Organization: 0.8784 - Date: 0.9869 - Symptom And Disease: 0.8688 - Transportation: 1.0 - F1 Macro: 0.9211 - F1 Micro: 0.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| | 0.2002 | 1.0 | 629 | 0.1212 | 0.9160 | 0.8349 | 0.8346 | 0.8122 | 0.5385 | 0.8769 | 0.7201 | 0.9553 | 0.7769 | 0.8587 | 0.8124 | 0.8586 | | 0.0557 | 2.0 | 1258 | 0.1025 | 0.9594 | 0.8836 | 0.9533 | 0.9731 | 0.2841 | 0.9228 | 0.8301 | 0.9842 | 0.8545 | 0.9444 | 0.8590 | 0.9191 | | 0.038 | 3.0 | 1887 | 0.0804 | 0.9741 | 0.7154 | 0.9732 | 0.9821 | 0.7615 | 0.9372 | 0.8576 | 0.9869 | 0.8461 | 0.9943 | 0.9028 | 0.9309 | | 0.0222 | 4.0 | 2516 | 0.0862 | 0.9871 | 0.5567 | 0.9691 | 0.9862 | 0.8207 | 0.9553 | 0.8707 | 0.9847 | 0.8740 | 1.0 | 0.9005 | 0.9398 | | 0.0148 | 5.0 | 3145 | 0.0850 | 0.9840 | 0.7711 | 0.9767 | 0.9821 | 0.8062 | 0.9570 | 0.8784 | 0.9869 | 0.8688 | 1.0 | 0.9211 | 0.9459 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1