File size: 2,925 Bytes
211baba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: bart-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 0.547
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-samsum
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3852
- Rouge1: 0.547
- Rouge2: 0.2837
- Rougel: 0.4462
- Rougelsum: 0.4454
- Gen Len: 29.72
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.5201 | 0.27 | 500 | 1.4589 | 0.5276 | 0.2694 | 0.4246 | 0.424 | 33.5067 |
| 1.3757 | 0.54 | 1000 | 1.5105 | 0.506 | 0.2566 | 0.415 | 0.4146 | 29.76 |
| 1.3496 | 0.81 | 1500 | 1.4039 | 0.5365 | 0.2759 | 0.4233 | 0.4221 | 29.8 |
| 1.094 | 1.09 | 2000 | 1.4119 | 0.5407 | 0.2827 | 0.4293 | 0.4288 | 29.84 |
| 1.1488 | 1.36 | 2500 | 1.3680 | 0.5275 | 0.2637 | 0.423 | 0.4224 | 26.92 |
| 1.1222 | 1.63 | 3000 | 1.2875 | 0.5369 | 0.2844 | 0.4473 | 0.4463 | 29.2267 |
| 1.1092 | 1.9 | 3500 | 1.3968 | 0.533 | 0.2818 | 0.4354 | 0.4363 | 30.0667 |
| 0.8509 | 2.17 | 4000 | 1.3682 | 0.5306 | 0.2874 | 0.4327 | 0.4331 | 29.1467 |
| 0.9565 | 2.44 | 4500 | 1.3450 | 0.5466 | 0.2782 | 0.4419 | 0.4409 | 29.2133 |
| 0.8496 | 2.72 | 5000 | 1.3768 | 0.5366 | 0.2807 | 0.4359 | 0.4351 | 30.7733 |
| 0.8397 | 2.99 | 5500 | 1.3852 | 0.547 | 0.2837 | 0.4462 | 0.4454 | 29.72 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|