--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - Emo-Codec/CREMA-D_synth metrics: - accuracy - precision - recall - f1 model-index: - name: hubert-base-ls960-tone-classification results: - task: name: Audio Classification type: audio-classification dataset: name: CREMA-D type: Emo-Codec/CREMA-D_synth metrics: - name: Accuracy type: accuracy value: 0.8016085790884718 - name: Precision type: precision value: 0.8014677098753149 - name: Recall type: recall value: 0.8016085790884718 - name: F1 type: f1 value: 0.7989608760238184 --- # hubert-base-ls960-tone-classification This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the CREMA-D dataset. It achieves the following results on the evaluation set: - Loss: 0.7499 - Accuracy: 0.8016 - Precision: 0.8015 - Recall: 0.8016 - F1: 0.7990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.4326 | 1.0 | 442 | 1.2934 | 0.5147 | 0.5889 | 0.5147 | 0.4878 | | 1.0447 | 2.0 | 884 | 0.8590 | 0.7051 | 0.7570 | 0.7051 | 0.7125 | | 0.775 | 3.0 | 1326 | 0.7668 | 0.7426 | 0.7589 | 0.7426 | 0.7404 | | 0.6593 | 4.0 | 1768 | 0.8127 | 0.7265 | 0.7564 | 0.7265 | 0.7245 | | 0.5014 | 5.0 | 2210 | 0.8670 | 0.7507 | 0.7631 | 0.7507 | 0.7436 | | 0.48 | 6.0 | 2652 | 0.7473 | 0.7694 | 0.7739 | 0.7694 | 0.7623 | | 0.3505 | 7.0 | 3094 | 0.7647 | 0.8016 | 0.8039 | 0.8016 | 0.7991 | | 0.3223 | 8.0 | 3536 | 0.7499 | 0.8016 | 0.8015 | 0.8016 | 0.7990 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1