import torch import torch.nn as nn # SOURCE: https://github.com/Ascend-Research/CascadedGaze # ------------------------------------------------------------------------ # Modified from NAFNet (https://github.com/megvii-research/NAFNet) # ------------------------------------------------------------------------ import torch.nn.functional as F class LayerNormFunction(torch.autograd.Function): @staticmethod def forward(ctx, x, weight, bias, eps): ctx.eps = eps N, C, H, W = x.size() mu = x.mean(1, keepdim=True) var = (x - mu).pow(2).mean(1, keepdim=True) y = (x - mu) / (var + eps).sqrt() ctx.save_for_backward(y, var, weight) y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) return y @staticmethod def backward(ctx, grad_output): eps = ctx.eps N, C, H, W = grad_output.size() y, var, weight = ctx.saved_variables g = grad_output * weight.view(1, C, 1, 1) mean_g = g.mean(dim=1, keepdim=True) mean_gy = (g * y).mean(dim=1, keepdim=True) gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( dim=0), None class LayerNorm2d(nn.Module): def __init__(self, channels, eps=1e-6): super(LayerNorm2d, self).__init__() self.register_parameter('weight', nn.Parameter(torch.ones(channels))) self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) self.eps = eps def forward(self, x): return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) class AvgPool2d(nn.Module): def __init__(self, kernel_size=None, base_size=None, auto_pad=True, fast_imp=False, train_size=None): super().__init__() self.kernel_size = kernel_size self.base_size = base_size self.auto_pad = auto_pad # only used for fast implementation self.fast_imp = fast_imp self.rs = [5, 4, 3, 2, 1] self.max_r1 = self.rs[0] self.max_r2 = self.rs[0] self.train_size = train_size def extra_repr(self) -> str: return 'kernel_size={}, base_size={}, stride={}, fast_imp={}'.format( self.kernel_size, self.base_size, self.kernel_size, self.fast_imp ) def forward(self, x): if self.kernel_size is None and self.base_size: train_size = self.train_size if isinstance(self.base_size, int): self.base_size = (self.base_size, self.base_size) self.kernel_size = list(self.base_size) self.kernel_size[0] = x.shape[2] * self.base_size[0] // train_size[-2] self.kernel_size[1] = x.shape[3] * self.base_size[1] // train_size[-1] # only used for fast implementation self.max_r1 = max(1, self.rs[0] * x.shape[2] // train_size[-2]) self.max_r2 = max(1, self.rs[0] * x.shape[3] // train_size[-1]) if self.kernel_size[0] >= x.size(-2) and self.kernel_size[1] >= x.size(-1): return F.adaptive_avg_pool2d(x, 1) if self.fast_imp: # Non-equivalent implementation but faster h, w = x.shape[2:] if self.kernel_size[0] >= h and self.kernel_size[1] >= w: out = F.adaptive_avg_pool2d(x, 1) else: r1 = [r for r in self.rs if h % r == 0][0] r2 = [r for r in self.rs if w % r == 0][0] # reduction_constraint r1 = min(self.max_r1, r1) r2 = min(self.max_r2, r2) s = x[:, :, ::r1, ::r2].cumsum(dim=-1).cumsum(dim=-2) n, c, h, w = s.shape k1, k2 = min(h - 1, self.kernel_size[0] // r1), min(w - 1, self.kernel_size[1] // r2) out = (s[:, :, :-k1, :-k2] - s[:, :, :-k1, k2:] - s[:, :, k1:, :-k2] + s[:, :, k1:, k2:]) / (k1 * k2) out = torch.nn.functional.interpolate(out, scale_factor=(r1, r2)) else: n, c, h, w = x.shape s = x.cumsum(dim=-1).cumsum_(dim=-2) s = torch.nn.functional.pad(s, (1, 0, 1, 0)) # pad 0 for convenience k1, k2 = min(h, self.kernel_size[0]), min(w, self.kernel_size[1]) s1, s2, s3, s4 = s[:, :, :-k1, :-k2], s[:, :, :-k1, k2:], s[:, :, k1:, :-k2], s[:, :, k1:, k2:] out = s4 + s1 - s2 - s3 out = out / (k1 * k2) if self.auto_pad: n, c, h, w = x.shape _h, _w = out.shape[2:] # print(x.shape, self.kernel_size) pad2d = ((w - _w) // 2, (w - _w + 1) // 2, (h - _h) // 2, (h - _h + 1) // 2) out = torch.nn.functional.pad(out, pad2d, mode='replicate') return out def replace_layers(model, base_size, train_size, fast_imp, **kwargs): for n, m in model.named_children(): if len(list(m.children())) > 0: ## compound module, go inside it replace_layers(m, base_size, train_size, fast_imp, **kwargs) if isinstance(m, nn.AdaptiveAvgPool2d): # print(base_size) pool = AvgPool2d(base_size=base_size, fast_imp=fast_imp, train_size=train_size) assert m.output_size == 1 setattr(model, n, pool) ''' ref. @article{chu2021tlsc, title={Revisiting Global Statistics Aggregation for Improving Image Restoration}, author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin}, journal={arXiv preprint arXiv:2112.04491}, year={2021} } ''' class Local_Base(): def convert(self, *args, train_size, **kwargs): replace_layers(self, *args, train_size=train_size, **kwargs) imgs = torch.rand(train_size) with torch.no_grad(): self.forward(imgs) class SimpleGate(nn.Module): def forward(self, x): x1, x2 = x.chunk(2, dim=1) return x1 * x2 class depthwise_separable_conv(nn.Module): def __init__(self, nin, nout, kernel_size = 3, padding = 0, stide = 1, bias=False): super(depthwise_separable_conv, self).__init__() self.pointwise = nn.Conv2d(nin, nout, kernel_size=1, bias=bias) self.depthwise = nn.Conv2d(nin, nin, kernel_size=kernel_size, stride=stide, padding=padding, groups=nin, bias=bias) def forward(self, x): x = self.depthwise(x) x = self.pointwise(x) return x class UpsampleWithFlops(nn.Upsample): def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None): super(UpsampleWithFlops, self).__init__(size, scale_factor, mode, align_corners) self.__flops__ = 0 def forward(self, input): self.__flops__ += input.numel() return super(UpsampleWithFlops, self).forward(input) class GlobalContextExtractor(nn.Module): def __init__(self, c, kernel_sizes=[3, 3, 5], strides=[3, 3, 5], padding=0, bias=False): super(GlobalContextExtractor, self).__init__() self.depthwise_separable_convs = nn.ModuleList([ depthwise_separable_conv(c, c, kernel_size, padding, stride, bias) for kernel_size, stride in zip(kernel_sizes, strides) ]) def forward(self, x): outputs = [] for conv in self.depthwise_separable_convs: x = F.gelu(conv(x)) outputs.append(x) return outputs class CascadedGazeBlock(nn.Module): def __init__(self, c, GCE_Conv =2, DW_Expand=2, FFN_Expand=2, drop_out_rate=0): super().__init__() self.dw_channel = c * DW_Expand self.GCE_Conv = GCE_Conv self.conv1 = nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=1, stride=1, groups=self.dw_channel, bias=True) if self.GCE_Conv == 3: self.GCE = GlobalContextExtractor(c=c, kernel_sizes=[3, 3, 5], strides=[2, 3, 4]) self.project_out = nn.Conv2d(int(self.dw_channel*2.5), c, kernel_size=1) self.sca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=int(self.dw_channel*2.5), out_channels=int(self.dw_channel*2.5), kernel_size=1, padding=0, stride=1, groups=1, bias=True)) else: self.GCE = GlobalContextExtractor(c=c, kernel_sizes=[3, 3], strides=[2, 3]) self.project_out = nn.Conv2d(self.dw_channel*2, c, kernel_size=1) self.sca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=self.dw_channel*2, out_channels=self.dw_channel*2, kernel_size=1, padding=0, stride=1, groups=1, bias=True)) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * c self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) def forward(self, inp): x = inp b,c,h,w = x.shape # # Nearest neighbor upsampling as part of the range fusion process self.upsample = UpsampleWithFlops(size=(h,w), mode='nearest') x = self.norm1(x) x = self.conv1(x) x = self.conv2(x) x = F.gelu(x) # Global Context Extractor + Range fusion x_1 , x_2 = x.chunk(2, dim=1) if self.GCE_Conv == 3: x1, x2, x3 = self.GCE(x_1 + x_2) x = torch.cat([x, self.upsample(x1), self.upsample(x2), self.upsample(x3)], dim = 1) else: x1, x2 = self.GCE(x_1 + x_2) x = torch.cat([x, self.upsample(x1), self.upsample(x2)], dim = 1) x = self.sca(x) * x x = self.project_out(x) x = self.dropout1(x) #channel-mixing y = inp + x * self.beta x = self.conv4(self.norm2(y)) x = self.sg(x) x = self.conv5(x) x = self.dropout2(x) return y + x * self.gamma class NAFBlock0(nn.Module): def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.0): super().__init__() dw_channel = c * DW_Expand self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) # Simplified Channel Attention self.sca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * c self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) def forward(self, inp): x = inp x = self.norm1(x) x = self.conv1(x) x = self.conv2(x) x = self.sg(x) x = x * self.sca(x) x = self.conv3(x) x = self.dropout1(x) y = inp + x * self.beta #Channel Mixing x = self.conv4(self.norm2(y)) x = self.sg(x) x = self.conv5(x) x = self.dropout2(x) return y + x * self.gamma class CascadedGaze(nn.Module): def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], GCE_CONVS_nums=[]): super().__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList() chan = width # for num in enc_blk_nums: for i in range(len(enc_blk_nums)): num = enc_blk_nums[i] GCE_Convs = GCE_CONVS_nums[i] self.encoders.append( nn.Sequential( *[CascadedGazeBlock(chan, GCE_Conv=GCE_Convs) for _ in range(num)] ) ) self.downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) chan = chan * 2 self.middle_blks = \ nn.Sequential( *[NAFBlock0(chan) for _ in range(middle_blk_num)] ) for i in range(len(dec_blk_nums)): num = dec_blk_nums[i] self.ups.append( nn.Sequential( nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) ) ) chan = chan // 2 self.decoders.append( nn.Sequential( *[NAFBlock0(chan) for _ in range(num)] ) ) self.padder_size = 2 ** len(self.encoders) def forward(self, inp): B, C, H, W = inp.shape inp = self.check_image_size(inp) x = self.intro(inp) encs = [] for encoder, down in zip(self.encoders, self.downs): x = encoder(x) encs.append(x) x = down(x) x = self.middle_blks(x) for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): x = up(x) x = x + enc_skip x = decoder(x) x = self.ending(x) x = x + inp return x[:, :, :H, :W] def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) return x