--- language: vi datasets: - cc100 tags: - summarization - translation - question-answering license: mit --- # EnViT5-base State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese and English used in [MTet's paper](https://arxiv.org/abs/2210.05610). ## How to use For more details, do check out [our Github repo](https://github.com/vietai/mtet). [Finetunning examples can be found here](https://github.com/vietai/ViT5/tree/main/finetunning_huggingface). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("VietAI/envit5-base") model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/envit5-base") model.cuda() ``` ## Citation ``` @misc{mtet, doi = {10.48550/ARXIV.2210.05610}, url = {https://arxiv.org/abs/2210.05610}, author = {Ngo, Chinh and Trinh, Trieu H. and Phan, Long and Tran, Hieu and Dang, Tai and Nguyen, Hieu and Nguyen, Minh and Luong, Minh-Thang}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {MTet: Multi-domain Translation for English and Vietnamese}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```