File size: 6,907 Bytes
9d33283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
%cd rem
#best object removal model
import gradio as gr
import numpy as np
import torch
from src.pipeline_stable_diffusion_controlnet_inpaint import *
from diffusers import StableDiffusionInpaintPipeline, ControlNetModel, DEISMultistepScheduler
from diffusers.utils import load_image
from PIL import Image
import cv2
from src.core import process_inpaint
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import time # Import the time module
from scipy.ndimage import label, find_objects
from PIL import Image, ImageDraw
import numpy as np
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-sd21-depth-diffusers", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",controlnet=controlnet, torch_dtype=torch.float16)
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
def resize_image(image, target_size):
width, height = image.size
aspect_ratio = float(width) / float(height)
if width > height:
new_width = target_size
new_height = int(target_size / aspect_ratio)
else:
new_width = int(target_size * aspect_ratio)
new_height = target_size
return image.resize((new_width, new_height), Image.BICUBIC)
def get_depth_map(image,target_size):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=target_size, # Replace with the size of your blended_image
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def add_split_line(mask_image, line_thickness):
# Ensure the mask is in the correct mode
if mask_image.mode != 'L':
mask_image = mask_image.convert('L')
# Convert mask to a numpy array
mask_array = np.array(mask_image)
# Label different regions in the mask
labeled_array, num_features = label(mask_array == 255)
# Create a draw object
draw = ImageDraw.Draw(mask_image)
# Iterate over each white area
for i in range(1, num_features + 1):
# Find the bounding box of the white area
slice_x, slice_y = find_objects(labeled_array == i)[0]
top, bottom = slice_x.start, slice_x.stop
left, right = slice_y.start, slice_y.stop
# Draw a line that splits the white area
if (right - left) > (bottom - top):
# If the area is wider than it is tall, draw a vertical line
center_x = (left + right) // 2
draw.line([(center_x, top), (center_x, bottom)], fill=0, width=line_thickness)
else:
# If the area is taller than it is wide, draw a horizontal line
center_y = (top + bottom) // 2
draw.line([(left, center_y), (right, center_y)], fill=0, width=line_thickness)
return mask_image
def predict(input_dict):
start_time = time.time() # Start time
# Get the drawn input image and mask
image = input_dict["image"].convert("RGB")
input_image = input_dict["mask"].convert("RGBA")
image = resize_image(image, 768)
input_image = resize_image(input_image, 768)
mask_holes = add_split_line(input_image, 10) # 10% of white area size
# Convert to numpy array
image_npp = np.array(image)
drawing_np = np.array(input_image)
if image_npp.shape[2] == 4:
image_npp = cv2.cvtColor(image_npp, cv2.COLOR_RGBA2RGB)
# Process the mask similar to Streamlit code
background = np.where(
(drawing_np[:, :, 0] == 0) &
(drawing_np[:, :, 1] == 0) &
(drawing_np[:, :, 2] == 0)
)
drawing = np.where(
(drawing_np[:, :, 0] == 255) &
(drawing_np[:, :, 1] == 0) &
(drawing_np[:, :, 2] == 255)
)
mask_npp = np.zeros_like(drawing_np)
mask_npp[background] = [0, 0, 0, 255] # Opaque where not drawing
mask_npp[drawing] = [0, 0, 0, 0] # Transparent where drawing
# Process inpainting
inpainted_image_np = process_inpaint(image_npp, mask_npp)
inpainted_image = Image.fromarray(inpainted_image_np)
unmasked_region = np.where(mask_npp[:, :, 3] != 0, True, False) # Non-zero in alpha channel indicates unmasked area
# Process the blended image
blended_image_np = np.array(inpainted_image_np)
blended_image_size = inpainted_image.size # This gives you (width, height)
# Flip the dimensions to get (768, 512)
flipped_size = (blended_image_size[1], blended_image_size[0])
depth_image = get_depth_map(inpainted_image, flipped_size)
generator = torch.manual_seed(0)
output = pipe(
prompt="",
num_inference_steps=8,
generator=generator,
image=blended_image_np,
control_image=depth_image,
controlnet_conditioning_scale=0.9,
mask_image=mask_holes
).images[0]
# Convert the final output to a NumPy array
output_np = np.array(output)
# Ensuring dimensions match before applying unmasked_region
if output_np.shape[:2] == inpainted_image_np.shape[:2]:
# Paste the unmasked region from inpainted_image_np onto the final output
output_np[unmasked_region] = inpainted_image_np[unmasked_region]
else:
print("Dimension mismatch: cannot apply unmasked_region")
# Convert back to PIL Image
final_output = Image.fromarray(output_np)
end_time = time.time()
inference_time = end_time - start_time
inference_time_str = f"Inference Time: {inference_time:.2f} seconds"
# Return both image and inference time
return final_output, inference_time_str
image_blocks = gr.Blocks()
with image_blocks as demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', tool='sketch', elem_id="input_image_upload", type="pil", label="Upload & Draw on Image")
btn = gr.Button("Remove Object")
with gr.Column():
result = gr.Image(label="Result")
inference_time_label = gr.Label() # Add a label to display the inference time
btn.click(fn=predict, inputs=[input_image], outputs=[result, inference_time_label]) # Update outputs
demo.launch(debug=True) |