|
import os |
|
import sys |
|
|
|
from urllib.parse import urlparse |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torch.hub import download_url_to_file, get_dir |
|
|
|
LAMA_MODEL_URL = os.environ.get( |
|
"LAMA_MODEL_URL", |
|
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", |
|
) |
|
|
|
|
|
def download_model(url=LAMA_MODEL_URL): |
|
parts = urlparse(url) |
|
hub_dir = get_dir() |
|
model_dir = os.path.join(hub_dir, "checkpoints") |
|
if not os.path.isdir(model_dir): |
|
os.makedirs(os.path.join(model_dir, "hub", "checkpoints")) |
|
filename = os.path.basename(parts.path) |
|
cached_file = os.path.join(model_dir, filename) |
|
if not os.path.exists(cached_file): |
|
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) |
|
hash_prefix = None |
|
download_url_to_file(url, cached_file, hash_prefix, progress=True) |
|
return cached_file |
|
|
|
|
|
def ceil_modulo(x, mod): |
|
if x % mod == 0: |
|
return x |
|
return (x // mod + 1) * mod |
|
|
|
|
|
def numpy_to_bytes(image_numpy: np.ndarray) -> bytes: |
|
data = cv2.imencode(".jpg", image_numpy)[1] |
|
image_bytes = data.tobytes() |
|
return image_bytes |
|
|
|
|
|
def load_img(img_bytes, gray: bool = False): |
|
nparr = np.frombuffer(img_bytes, np.uint8) |
|
if gray: |
|
np_img = cv2.imdecode(nparr, cv2.IMREAD_GRAYSCALE) |
|
else: |
|
np_img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED) |
|
if len(np_img.shape) == 3 and np_img.shape[2] == 4: |
|
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGRA2RGB) |
|
else: |
|
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB) |
|
|
|
return np_img |
|
|
|
|
|
def norm_img(np_img): |
|
if len(np_img.shape) == 2: |
|
np_img = np_img[:, :, np.newaxis] |
|
np_img = np.transpose(np_img, (2, 0, 1)) |
|
np_img = np_img.astype("float32") / 255 |
|
return np_img |
|
|
|
|
|
def resize_max_size( |
|
np_img, size_limit: int, interpolation=cv2.INTER_CUBIC |
|
) -> np.ndarray: |
|
|
|
h, w = np_img.shape[:2] |
|
if max(h, w) > size_limit: |
|
ratio = size_limit / max(h, w) |
|
new_w = int(w * ratio + 0.5) |
|
new_h = int(h * ratio + 0.5) |
|
return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation) |
|
else: |
|
return np_img |
|
|
|
|
|
def pad_img_to_modulo(img, mod): |
|
channels, height, width = img.shape |
|
out_height = ceil_modulo(height, mod) |
|
out_width = ceil_modulo(width, mod) |
|
return np.pad( |
|
img, |
|
((0, 0), (0, out_height - height), (0, out_width - width)), |
|
mode="symmetric", |
|
) |