AlexWortega commited on
Commit
9b27654
1 Parent(s): 25be1c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -199
README.md CHANGED
@@ -1,201 +1,86 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
+ language:
3
+ - ru
4
+ - en
5
+ datasets:
6
+ - zjkarina/Vikhr_instruct
7
  ---
8
+ ```python
9
+ from peft import PeftModel, PeftConfig
10
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
11
+ import torch
12
+
13
+ MODEL_NAME = "Vikhrmodels/Vikhr-7B-instruct"
14
+ DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n"
15
+ DEFAULT_SYSTEM_PROMPT = "Ты — Вихрь, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
16
+
17
+ class Conversation:
18
+ def __init__(
19
+ self,
20
+ message_template=DEFAULT_MESSAGE_TEMPLATE,
21
+ system_prompt=DEFAULT_SYSTEM_PROMPT,
22
+ ):
23
+ self.message_template = message_template
24
+ self.messages = [{
25
+ "role": "system",
26
+ "content": system_prompt
27
+ }]
28
+
29
+ def add_user_message(self, message):
30
+ self.messages.append({
31
+ "role": "user",
32
+ "content": message
33
+ })
34
+
35
+ def get_prompt(self, tokenizer):
36
+ final_text = ""
37
+ for message in self.messages:
38
+ message_text = self.message_template.format(**message)
39
+ final_text += message_text
40
+ final_text += 'bot'
41
+ return final_text.strip()
42
+
43
+
44
+ def generate(model, tokenizer, prompt, generation_config):
45
+ data = tokenizer(prompt, return_tensors="pt")
46
+ data = {k: v.to(model.device) for k, v in data.items()}
47
+ output_ids = model.generate(
48
+ **data,
49
+ generation_config=generation_config
50
+ )[0]
51
+ output_ids = output_ids[len(data["input_ids"][0]):]
52
+ output = tokenizer.decode(output_ids, skip_special_tokens=True)
53
+ return output.strip()
54
+
55
+ config = PeftConfig.from_pretrained(MODEL_NAME)
56
+ model = AutoModelForCausalLM.from_pretrained(
57
+ config.base_model_name_or_path,
58
+ load_in_8bit=True,
59
+ torch_dtype=torch.float16,
60
+ device_map="auto"
61
+ )
62
+ model = PeftModel.from_pretrained(
63
+ model,
64
+ MODEL_NAME,
65
+ torch_dtype=torch.float16
66
+ )
67
+ model.eval()
68
+
69
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
70
+ generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
71
+ print(generation_config)
72
+
73
+ inputs = ["Как тебя зовут?", "Кто такой Колмогоров?"]
74
+
75
+ for inp in inputs:
76
+ conversation = Conversation()
77
+ conversation.add_user_message(inp)
78
+ prompt = conversation.get_prompt(tokenizer)
79
+
80
+ output = generate(model, tokenizer, prompt, generation_config)
81
+ print(inp)
82
+ print(output)
83
+ print('\n')
84
+ ```
85
+
86
+ [wandb](https://wandb.ai/karina_romanova/vikhr/runs/up2hw5eh?workspace=user-karina_romanova)