LakoMoor commited on
Commit
64551ac
1 Parent(s): b30ff7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -159
README.md CHANGED
@@ -1,199 +1,142 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
 
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
 
 
 
 
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
 
83
 
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ model_name: Vikhr-Llama-3.2-1B-instruct
4
+ base_model:
5
+ - meta-llama/Llama-3.2-1B-Instruct
6
+ language:
7
+ - ru
8
+ license: apache-2.0
9
+ datasets:
10
+ - Vikhrmodels/GrandMaster-PRO-MAX
11
  ---
12
 
13
+ # 💨📱 Vikhr-Llama-3.2-1B-instruct
14
 
15
+ #### RU
16
 
17
+ Инструктивная модель на основе Llama-3.2-1B-Instruct, обученная на русскоязычном датасете GrandMaster-PRO-MAX. В 5 раз эффективнее базовой модели, и идеально подходит для запуска на слабых или мобильных устройствах.
18
 
19
+ #### EN
20
 
21
+ Instructive model based on Llama-3.2-1B-Instruct, trained on the Russian-language dataset GrandMaster-PRO-MAX. It is 5 times more efficient than the base model, making it perfect for deployment on low-power or mobile devices.
22
 
23
+ ## GGUF
24
 
25
+ - [Vikhrmodels/Vikhr-Llama-3.2-1B-instruct-GGUF](https://huggingface.co/Vikhrmodels/Vikhr-Llama-3.2-1B-instruct-GGUF)
26
 
27
+ ## Особенности:
28
 
29
+ - 📚 Основа / Base: [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
30
+ - 🇷🇺 Специализация / Specialization: **RU**
31
+ - 💾 Датасет / Dataset: [GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX)
 
 
 
 
32
 
33
+ ## Попробовать / Try now:
34
 
35
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bJpLmplDGkMbfOLO2CH6IO-2uUZEaknf?usp=sharing)
36
 
37
+ ## Описание:
 
 
38
 
39
+ #### RU
40
 
41
+ Vikhr-Llama-3.2-1B-instruct это компактная языковая модель, обученная на датасете GrandMaster-PRO-MAX, специально доученная для обработки русского языка. Эффективность модели в 5 раз превышает базовую модель, а её размер не превышает 3GB, что делает её отличным выбором для запуска на слабых и мобильных устройствах.
42
 
43
+ #### EN
44
 
45
+ Vikhr-Llama-3.2-1B-instruct is a compact language model trained on the GrandMaster-PRO-MAX dataset, specifically designed for processing the Russian language. Its efficiency is 5 times higher than the base model, and its size does not exceed 3GB, making it an excellent choice for deployment on low-power and mobile devices.
46
 
47
+ ## Обучение / Train:
48
 
49
+ #### RU
50
 
51
+ Для создания **Vikhr-Llama-3.2-1B-instruct** использовался метод SFT (Supervised Fine-Tuning). Мы обучили модель на синтетическом датасете **Vikhrmodels/GrandMaster-PRO-MAX** (150k инструкций) с поддержкой CoT (Chain-Of-Thought), используя промпты для GPT-4-turbo.
52
 
53
+ Скрипт для запуска SFT можно найти в нашей библиотеке на GitHub: [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/).
54
 
55
+ #### EN
56
 
57
+ To create **Vikhr-Llama-3.2-1B-instruct**, the SFT (Supervised Fine-Tuning) method was used. We trained the model on a synthetic dataset **Vikhrmodels/GrandMaster-PRO-MAX** (150k instructions) with support for CoT (Chain-Of-Thought), utilizing prompts for GPT-4-turbo.
58
 
59
+ The script for running SFT can be found in our GitHub repository: [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/).
60
 
61
+ ## Пример кода для запуска / Sample code to run:
62
 
63
+ **Рекомендуемая температура для генерации: 0.3** / **Recommended generation temperature: 0.3**.
64
 
65
+ ```python
66
+ from transformers import AutoModelForCausalLM, AutoTokenizer
67
 
68
+ # Загрузка модели и токенизатора
69
+ model_name = "Vikhrmodels/Vikhr-Llama-3.2-1B-instruct"
70
+ model = AutoModelForCausalLM.from_pretrained(model_name)
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
72
 
73
+ # Подготовка входного текста
74
+ input_text = "Напиши очень краткую рецензию о книге гарри поттер."
75
 
76
+ # Токенизация и генерация текста
77
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
78
+ output = model.generate(
79
+ input_ids,
80
+ max_length=1512,
81
+ temperature=0.3,
82
+ num_return_sequences=1,
83
+ no_repeat_ngram_size=2,
84
+ top_k=50,
85
+ top_p=0.95,
86
+ )
87
 
88
+ # Декодирование и вывод результата
89
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
90
+ print(generated_text)
91
+ ```
92
 
93
+ #### Ответ модели / Model response:
94
 
95
+ > **Краткая рецензия на книгу "Гарри Поттер"**
96
+ >
97
+ > "Гарри Поттер" — это серия книг, написанная Дж. К. Роулинг, которая стала культовой в мире детских литературы. Книги рассказывают о жизни и приключениях молодого ученика по имени Гарри Поттер, который стал знаменитым по своей способности к магии.
98
+ >
99
+ > **Основные моменты:**
100
+ >
101
+ > 1. **Введение в мир Гарри Поттера:** Книги начинаются с описания Гарри, его семьи и школы, где он изучает магию. Гарри — необычный ученик, который не имеет магических способностей, но обладает уникальным умом и способностью к решению проблем.
102
+ >
103
+ > 2. **Социальные и политические аспекты:** В книгах рассматриваются социальные и политические аспекты, такие как правительство, магические общества, и их взаимодействие.
104
+ >
105
+ > 3. **Магические приключения:** Гарри и его друзья, включая Рон и Хэл, сталкиваются с множеством магических угроз, включая злодеев, такие как Волшебный Войнук и Сатан.
106
+ >
107
+ > 4. **Развитие персонажей:** В книгах развиваются персонажи, их мотивации и отношения с другими персонажами.
108
+ >
109
+ > 5. **Философские и моральные вопросы:** Книги затрагивают темы, такие как вера, доброта, справедливость и моральные дилеммы.
110
+ >
111
+ > **Заключение:**
112
+ >
113
+ > "Гарри Поттер" — это не только история о молодом ученике, но и глубокое исследование человеческого опыта, социальных норм и моральных дилемм. Книги привлекают читателей своими захватывающими сюжетами, яркими персонажами и глубокими философскими размышлениями. Они являются не только увлекательным приключением, но и важным источником вдохновения для многих людей.
114
 
115
+ ## Метрики на ru_arena_general / Metrics on ru_arena_general
116
 
117
+ | **Model** | **Score** | **95% CI** | **Avg Tokens** | **Std Tokens** | **LC Score** |
118
+ | ------------------------------------------- | --------- | --------------- | -------------- | -------------- | ------------ |
119
+ | kolibri-vikhr-mistral-0427 | 22.41 | +1.6 / -1.6 | 489.89 | 566.29 | 46.04 |
120
+ | storm-7b | 20.62 | +2.0 / -1.6 | 419.32 | 190.85 | 45.78 |
121
+ | neural-chat-7b-v3-3 | 19.04 | +2.0 / -1.7 | 927.21 | 1211.62 | 45.56 |
122
+ | **Vikhrmodels-Vikhr-Llama-3.2-1B-instruct** | **19.04** | **+1.3 / -1.6** | **958.63** | **1297.33** | **45.56** |
123
+ | gigachat_lite | 17.2 | +1.4 / -1.4 | 276.81 | 329.66 | 45.29 |
124
+ | Vikhrmodels-vikhr-qwen-1.5b-it | 13.19 | +1.4 / -1.6 | 2495.38 | 741.45 | 44.72 |
125
+ | meta-llama-Llama-3.2-1B-Instruct | 4.04 | +0.8 / -0.6 | 1240.53 | 1783.08 | 43.42 |
126
 
127
+ ### Авторы
128
 
129
+ - Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), [Vikhr Team](https://t.me/vikhrlabs)
130
+ - Nikolay Kompanets, [LakoMoor](https://t.me/lakomoor), [Vikhr Team](https://t.me/vikhrlabs)
131
+ - Konstantin Korolev, [Vikhr Team](https://t.me/vikhrlabs)
132
+ - Aleksandr Nikolich, [Vikhr Team](https://t.me/vikhrlabs)
133
 
134
+ ```
135
+ @article{nikolich2024vikhr,
136
+ title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian},
137
+ author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov},
138
+ journal={arXiv preprint arXiv:2405.13929},
139
+ year={2024},
140
+ url={https://arxiv.org/pdf/2405.13929}
141
+ }
142
+ ```