VishalD1234
commited on
Delete processing_florence2.py
Browse files- processing_florence2.py +0 -1078
processing_florence2.py
DELETED
@@ -1,1078 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 Microsoft and The HuggingFace Inc. team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""
|
16 |
-
Processor class for Florence-2.
|
17 |
-
"""
|
18 |
-
|
19 |
-
import re
|
20 |
-
import logging
|
21 |
-
from typing import List, Optional, Union
|
22 |
-
import numpy as np
|
23 |
-
|
24 |
-
import torch
|
25 |
-
|
26 |
-
from transformers.feature_extraction_utils import BatchFeature
|
27 |
-
from transformers.image_utils import ImageInput, is_valid_image
|
28 |
-
from transformers.processing_utils import ProcessorMixin
|
29 |
-
from transformers.tokenization_utils_base import (
|
30 |
-
PaddingStrategy,
|
31 |
-
PreTokenizedInput,
|
32 |
-
TextInput,
|
33 |
-
TruncationStrategy,
|
34 |
-
)
|
35 |
-
from transformers.utils import TensorType
|
36 |
-
|
37 |
-
|
38 |
-
logger = logging.getLogger(__name__)
|
39 |
-
|
40 |
-
# Copied from transformers.models.idefics2.processing_idefics2.is_url
|
41 |
-
def is_url(val) -> bool:
|
42 |
-
return isinstance(val, str) and val.startswith("http")
|
43 |
-
|
44 |
-
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
|
45 |
-
def is_image_or_image_url(elem):
|
46 |
-
return is_url(elem) or is_valid_image(elem)
|
47 |
-
|
48 |
-
|
49 |
-
def _is_str_or_image(elem):
|
50 |
-
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
51 |
-
|
52 |
-
|
53 |
-
class Florence2Processor(ProcessorMixin):
|
54 |
-
r"""
|
55 |
-
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
|
56 |
-
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
|
57 |
-
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
|
58 |
-
Args:
|
59 |
-
image_processor ([`CLIPImageProcessor`], *optional*):
|
60 |
-
The image processor is a required input.
|
61 |
-
tokenizer ([`BartTokenizerFast`], *optional*):
|
62 |
-
The tokenizer is a required input.
|
63 |
-
"""
|
64 |
-
|
65 |
-
attributes = ["image_processor", "tokenizer"]
|
66 |
-
image_processor_class = "CLIPImageProcessor"
|
67 |
-
tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
|
68 |
-
|
69 |
-
def __init__(
|
70 |
-
self,
|
71 |
-
image_processor=None,
|
72 |
-
tokenizer=None,
|
73 |
-
):
|
74 |
-
if image_processor is None:
|
75 |
-
raise ValueError("You need to specify an `image_processor`.")
|
76 |
-
if tokenizer is None:
|
77 |
-
raise ValueError("You need to specify a `tokenizer`.")
|
78 |
-
if not hasattr(image_processor, "image_seq_length"):
|
79 |
-
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
80 |
-
|
81 |
-
self.image_seq_length = image_processor.image_seq_length
|
82 |
-
|
83 |
-
tokens_to_add = {
|
84 |
-
'additional_special_tokens': \
|
85 |
-
tokenizer.additional_special_tokens + \
|
86 |
-
['<od>', '</od>', '<ocr>', '</ocr>'] + \
|
87 |
-
[f'<loc_{x}>' for x in range(1000)] + \
|
88 |
-
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
|
89 |
-
}
|
90 |
-
tokenizer.add_special_tokens(tokens_to_add)
|
91 |
-
|
92 |
-
self.tasks_answer_post_processing_type = {
|
93 |
-
'<OCR>': 'pure_text',
|
94 |
-
'<OCR_WITH_REGION>': 'ocr',
|
95 |
-
'<CAPTION>': 'pure_text',
|
96 |
-
'<DETAILED_CAPTION>': 'pure_text',
|
97 |
-
'<MORE_DETAILED_CAPTION>': 'pure_text',
|
98 |
-
'<OD>': 'description_with_bboxes',
|
99 |
-
'<DENSE_REGION_CAPTION>': 'description_with_bboxes',
|
100 |
-
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
|
101 |
-
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
|
102 |
-
'<REGION_TO_SEGMENTATION>': 'polygons',
|
103 |
-
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
|
104 |
-
'<REGION_TO_CATEGORY>': 'pure_text',
|
105 |
-
'<REGION_TO_DESCRIPTION>': 'pure_text',
|
106 |
-
'<REGION_TO_OCR>': 'pure_text',
|
107 |
-
'<REGION_PROPOSAL>': 'bboxes'
|
108 |
-
}
|
109 |
-
|
110 |
-
self.task_prompts_without_inputs = {
|
111 |
-
'<OCR>': 'What is the text in the image?',
|
112 |
-
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
|
113 |
-
'<CAPTION>': 'What does the image describe?',
|
114 |
-
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
|
115 |
-
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
|
116 |
-
'<OD>': 'Locate the objects with category name in the image.',
|
117 |
-
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
|
118 |
-
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
|
119 |
-
}
|
120 |
-
|
121 |
-
self.task_prompts_with_input = {
|
122 |
-
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
|
123 |
-
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
|
124 |
-
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
|
125 |
-
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
|
126 |
-
'<REGION_TO_CATEGORY>': 'What is the region {input}?',
|
127 |
-
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
|
128 |
-
'<REGION_TO_OCR>': 'What text is in the region {input}?',
|
129 |
-
}
|
130 |
-
|
131 |
-
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
|
132 |
-
|
133 |
-
|
134 |
-
super().__init__(image_processor, tokenizer)
|
135 |
-
|
136 |
-
def _construct_prompts(self, text):
|
137 |
-
# replace the task tokens with the task prompts if task token is in the text
|
138 |
-
prompts = []
|
139 |
-
for _text in text:
|
140 |
-
# 1. fixed task prompts without additional inputs
|
141 |
-
for task_token, task_prompt in self.task_prompts_without_inputs.items():
|
142 |
-
if task_token in _text:
|
143 |
-
assert _text == task_token, f"Task token {task_token} should be the only token in the text."
|
144 |
-
_text = task_prompt
|
145 |
-
break
|
146 |
-
# 2. task prompts with additional inputs
|
147 |
-
for task_token, task_prompt in self.task_prompts_with_input.items():
|
148 |
-
if task_token in _text:
|
149 |
-
_text = task_prompt.format(input=_text.replace(task_token, ''))
|
150 |
-
break
|
151 |
-
prompts.append(_text)
|
152 |
-
return prompts
|
153 |
-
|
154 |
-
def __call__(
|
155 |
-
self,
|
156 |
-
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
157 |
-
images: ImageInput = None,
|
158 |
-
tokenize_newline_separately: bool = True,
|
159 |
-
padding: Union[bool, str, PaddingStrategy] = False,
|
160 |
-
truncation: Union[bool, str, TruncationStrategy] = None,
|
161 |
-
max_length=None,
|
162 |
-
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
163 |
-
do_resize: bool = None,
|
164 |
-
do_normalize: bool = None,
|
165 |
-
image_mean: Optional[Union[float, List[float]]] = None,
|
166 |
-
image_std: Optional[Union[float, List[float]]] = None,
|
167 |
-
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
|
168 |
-
input_data_format: Optional[
|
169 |
-
Union[str, "ChannelDimension"] # noqa: F821
|
170 |
-
] = None,
|
171 |
-
resample: "PILImageResampling" = None, # noqa: F821
|
172 |
-
do_convert_rgb: bool = None,
|
173 |
-
do_thumbnail: bool = None,
|
174 |
-
do_align_long_axis: bool = None,
|
175 |
-
do_rescale: bool = None,
|
176 |
-
) -> BatchFeature:
|
177 |
-
"""
|
178 |
-
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
179 |
-
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
|
180 |
-
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
181 |
-
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
182 |
-
of the above two methods for more information.
|
183 |
-
Args:
|
184 |
-
text (`str`, `List[str]`, `List[List[str]]`):
|
185 |
-
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
186 |
-
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
187 |
-
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
188 |
-
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
189 |
-
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
190 |
-
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
191 |
-
number of channels, H and W are image height and width.
|
192 |
-
tokenize_newline_separately (`bool`, defaults to `True`):
|
193 |
-
Adds a separately tokenized '\n' at the end of the prompt.
|
194 |
-
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
195 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
196 |
-
index) among:
|
197 |
-
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
198 |
-
sequence if provided).
|
199 |
-
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
200 |
-
acceptable input length for the model if that argument is not provided.
|
201 |
-
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
202 |
-
lengths).
|
203 |
-
max_length (`int`, *optional*):
|
204 |
-
Maximum length of the returned list and optionally padding length (see above).
|
205 |
-
truncation (`bool`, *optional*):
|
206 |
-
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
207 |
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
208 |
-
If set, will return tensors of a particular framework. Acceptable values are:
|
209 |
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
210 |
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
211 |
-
- `'np'`: Return NumPy `np.ndarray` objects.
|
212 |
-
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
213 |
-
Returns:
|
214 |
-
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
215 |
-
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
|
216 |
-
is provided, the `input_ids` will also contain the suffix input ids.
|
217 |
-
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
218 |
-
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
219 |
-
`None`).
|
220 |
-
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
221 |
-
- **labels** -- Labels compatible with training if `suffix` is not None
|
222 |
-
"""
|
223 |
-
|
224 |
-
return_token_type_ids = False
|
225 |
-
|
226 |
-
if images is None:
|
227 |
-
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
|
228 |
-
if text is None:
|
229 |
-
logger.warning_once(
|
230 |
-
"You are using Florence-2 without a text prompt."
|
231 |
-
)
|
232 |
-
text = ""
|
233 |
-
|
234 |
-
if isinstance(text, List) and isinstance(images, List):
|
235 |
-
if len(images) < len(text):
|
236 |
-
raise ValueError(
|
237 |
-
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
|
238 |
-
)
|
239 |
-
if _is_str_or_image(text):
|
240 |
-
text = [text]
|
241 |
-
elif isinstance(text, list) and _is_str_or_image(text[0]):
|
242 |
-
pass
|
243 |
-
|
244 |
-
pixel_values = self.image_processor(
|
245 |
-
images,
|
246 |
-
do_resize=do_resize,
|
247 |
-
do_normalize=do_normalize,
|
248 |
-
return_tensors=return_tensors,
|
249 |
-
image_mean=image_mean,
|
250 |
-
image_std=image_std,
|
251 |
-
input_data_format=input_data_format,
|
252 |
-
data_format=data_format,
|
253 |
-
resample=resample,
|
254 |
-
do_convert_rgb=do_convert_rgb,
|
255 |
-
)["pixel_values"]
|
256 |
-
|
257 |
-
if max_length is not None:
|
258 |
-
max_length -= self.image_seq_length # max_length has to account for the image tokens
|
259 |
-
|
260 |
-
text = self._construct_prompts(text)
|
261 |
-
|
262 |
-
inputs = self.tokenizer(
|
263 |
-
text,
|
264 |
-
return_tensors=return_tensors,
|
265 |
-
padding=padding,
|
266 |
-
max_length=max_length,
|
267 |
-
truncation=truncation,
|
268 |
-
return_token_type_ids=return_token_type_ids,
|
269 |
-
)
|
270 |
-
|
271 |
-
return_data = {**inputs, "pixel_values": pixel_values}
|
272 |
-
|
273 |
-
if return_token_type_ids:
|
274 |
-
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
|
275 |
-
return_data.update({"labels": labels})
|
276 |
-
return BatchFeature(data=return_data)
|
277 |
-
|
278 |
-
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
|
279 |
-
def batch_decode(self, *args, **kwargs):
|
280 |
-
"""
|
281 |
-
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
282 |
-
refer to the docstring of this method for more information.
|
283 |
-
"""
|
284 |
-
return self.tokenizer.batch_decode(*args, **kwargs)
|
285 |
-
|
286 |
-
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
|
287 |
-
def decode(self, *args, **kwargs):
|
288 |
-
"""
|
289 |
-
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
290 |
-
the docstring of this method for more information.
|
291 |
-
"""
|
292 |
-
return self.tokenizer.decode(*args, **kwargs)
|
293 |
-
|
294 |
-
@property
|
295 |
-
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
|
296 |
-
def model_input_names(self):
|
297 |
-
tokenizer_input_names = self.tokenizer.model_input_names
|
298 |
-
image_processor_input_names = self.image_processor.model_input_names
|
299 |
-
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
300 |
-
|
301 |
-
def post_process_generation(self, text, task, image_size):
|
302 |
-
"""
|
303 |
-
Post-process the output of the model to each of the task outputs.
|
304 |
-
Args:
|
305 |
-
text (`str`): The text to post-process.
|
306 |
-
task (`str`): The task to post-process the text for.
|
307 |
-
image_size (`Tuple[int, int]`): The size of the image. height x width.
|
308 |
-
"""
|
309 |
-
|
310 |
-
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
|
311 |
-
task_answer = self.post_processor(
|
312 |
-
text=text,
|
313 |
-
image_size=image_size,
|
314 |
-
parse_tasks=task_answer_post_processing_type,
|
315 |
-
)[task_answer_post_processing_type]
|
316 |
-
|
317 |
-
if task_answer_post_processing_type == 'pure_text':
|
318 |
-
final_answer = task_answer
|
319 |
-
# remove the special tokens
|
320 |
-
final_answer = final_answer.replace('<s>', '').replace('</s>', '')
|
321 |
-
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
|
322 |
-
od_instances = task_answer
|
323 |
-
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
|
324 |
-
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
|
325 |
-
final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
|
326 |
-
elif task_answer_post_processing_type in ['ocr']:
|
327 |
-
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
|
328 |
-
labels = [str(_od_instance['text']) for _od_instance in task_answer]
|
329 |
-
final_answer = {'quad_boxes': bboxes, 'labels': labels}
|
330 |
-
elif task_answer_post_processing_type in ['phrase_grounding']:
|
331 |
-
bboxes = []
|
332 |
-
labels = []
|
333 |
-
for _grounded_phrase in task_answer:
|
334 |
-
for _bbox in _grounded_phrase['bbox']:
|
335 |
-
bboxes.append(_bbox)
|
336 |
-
labels.append(_grounded_phrase['cat_name'])
|
337 |
-
final_answer = {'bboxes': bboxes, 'labels': labels}
|
338 |
-
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
|
339 |
-
labels = []
|
340 |
-
polygons = []
|
341 |
-
for result in task_answer:
|
342 |
-
label = result['cat_name']
|
343 |
-
_polygons = result['polygons']
|
344 |
-
labels.append(label)
|
345 |
-
polygons.append(_polygons)
|
346 |
-
final_answer = {'polygons': polygons, 'labels': labels}
|
347 |
-
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
|
348 |
-
bboxes = []
|
349 |
-
bboxes_labels = []
|
350 |
-
polygons = []
|
351 |
-
polygons_labels = []
|
352 |
-
for result in task_answer:
|
353 |
-
label = result['cat_name']
|
354 |
-
if 'polygons' in result:
|
355 |
-
_polygons = result['polygons']
|
356 |
-
polygons.append(_polygons)
|
357 |
-
polygons_labels.append(label)
|
358 |
-
else:
|
359 |
-
_bbox = result['bbox']
|
360 |
-
bboxes.append(_bbox)
|
361 |
-
bboxes_labels.append(label)
|
362 |
-
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
|
363 |
-
else:
|
364 |
-
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
|
365 |
-
|
366 |
-
final_answer = {
|
367 |
-
task: final_answer}
|
368 |
-
return final_answer
|
369 |
-
|
370 |
-
class BoxQuantizer(object):
|
371 |
-
def __init__(self, mode, bins):
|
372 |
-
self.mode = mode
|
373 |
-
self.bins = bins
|
374 |
-
|
375 |
-
def quantize(self, boxes: torch.Tensor, size):
|
376 |
-
bins_w, bins_h = self.bins # Quantization bins.
|
377 |
-
size_w, size_h = size # Original image size.
|
378 |
-
size_per_bin_w = size_w / bins_w
|
379 |
-
size_per_bin_h = size_h / bins_h
|
380 |
-
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
381 |
-
|
382 |
-
if self.mode == 'floor':
|
383 |
-
quantized_xmin = (
|
384 |
-
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
385 |
-
quantized_ymin = (
|
386 |
-
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
387 |
-
quantized_xmax = (
|
388 |
-
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
389 |
-
quantized_ymax = (
|
390 |
-
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
391 |
-
|
392 |
-
elif self.mode == 'round':
|
393 |
-
raise NotImplementedError()
|
394 |
-
|
395 |
-
else:
|
396 |
-
raise ValueError('Incorrect quantization type.')
|
397 |
-
|
398 |
-
quantized_boxes = torch.cat(
|
399 |
-
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
|
400 |
-
).int()
|
401 |
-
|
402 |
-
return quantized_boxes
|
403 |
-
|
404 |
-
def dequantize(self, boxes: torch.Tensor, size):
|
405 |
-
bins_w, bins_h = self.bins # Quantization bins.
|
406 |
-
size_w, size_h = size # Original image size.
|
407 |
-
size_per_bin_w = size_w / bins_w
|
408 |
-
size_per_bin_h = size_h / bins_h
|
409 |
-
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
410 |
-
|
411 |
-
if self.mode == 'floor':
|
412 |
-
# Add 0.5 to use the center position of the bin as the coordinate.
|
413 |
-
dequantized_xmin = (xmin + 0.5) * size_per_bin_w
|
414 |
-
dequantized_ymin = (ymin + 0.5) * size_per_bin_h
|
415 |
-
dequantized_xmax = (xmax + 0.5) * size_per_bin_w
|
416 |
-
dequantized_ymax = (ymax + 0.5) * size_per_bin_h
|
417 |
-
|
418 |
-
elif self.mode == 'round':
|
419 |
-
raise NotImplementedError()
|
420 |
-
|
421 |
-
else:
|
422 |
-
raise ValueError('Incorrect quantization type.')
|
423 |
-
|
424 |
-
dequantized_boxes = torch.cat(
|
425 |
-
(dequantized_xmin, dequantized_ymin,
|
426 |
-
dequantized_xmax, dequantized_ymax), dim=-1
|
427 |
-
)
|
428 |
-
|
429 |
-
return dequantized_boxes
|
430 |
-
|
431 |
-
|
432 |
-
class CoordinatesQuantizer(object):
|
433 |
-
"""
|
434 |
-
Quantize coornidates (Nx2)
|
435 |
-
"""
|
436 |
-
|
437 |
-
def __init__(self, mode, bins):
|
438 |
-
self.mode = mode
|
439 |
-
self.bins = bins
|
440 |
-
|
441 |
-
def quantize(self, coordinates: torch.Tensor, size):
|
442 |
-
bins_w, bins_h = self.bins # Quantization bins.
|
443 |
-
size_w, size_h = size # Original image size.
|
444 |
-
size_per_bin_w = size_w / bins_w
|
445 |
-
size_per_bin_h = size_h / bins_h
|
446 |
-
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
447 |
-
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
448 |
-
|
449 |
-
if self.mode == 'floor':
|
450 |
-
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
451 |
-
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
452 |
-
|
453 |
-
elif self.mode == 'round':
|
454 |
-
raise NotImplementedError()
|
455 |
-
|
456 |
-
else:
|
457 |
-
raise ValueError('Incorrect quantization type.')
|
458 |
-
|
459 |
-
quantized_coordinates = torch.cat(
|
460 |
-
(quantized_x, quantized_y), dim=-1
|
461 |
-
).int()
|
462 |
-
|
463 |
-
return quantized_coordinates
|
464 |
-
|
465 |
-
def dequantize(self, coordinates: torch.Tensor, size):
|
466 |
-
bins_w, bins_h = self.bins # Quantization bins.
|
467 |
-
size_w, size_h = size # Original image size.
|
468 |
-
size_per_bin_w = size_w / bins_w
|
469 |
-
size_per_bin_h = size_h / bins_h
|
470 |
-
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
471 |
-
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
472 |
-
|
473 |
-
if self.mode == 'floor':
|
474 |
-
# Add 0.5 to use the center position of the bin as the coordinate.
|
475 |
-
dequantized_x = (x + 0.5) * size_per_bin_w
|
476 |
-
dequantized_y = (y + 0.5) * size_per_bin_h
|
477 |
-
|
478 |
-
elif self.mode == 'round':
|
479 |
-
raise NotImplementedError()
|
480 |
-
|
481 |
-
else:
|
482 |
-
raise ValueError('Incorrect quantization type.')
|
483 |
-
|
484 |
-
dequantized_coordinates = torch.cat(
|
485 |
-
(dequantized_x, dequantized_y), dim=-1
|
486 |
-
)
|
487 |
-
|
488 |
-
return dequantized_coordinates
|
489 |
-
|
490 |
-
|
491 |
-
class Florence2PostProcesser(object):
|
492 |
-
"""
|
493 |
-
Florence-2 post process for converting text prediction to various tasks results.
|
494 |
-
Args:
|
495 |
-
config: A dict of configs.
|
496 |
-
tokenizer: A tokenizer for decoding text to spans.
|
497 |
-
sample config:
|
498 |
-
UNIFIED_POST_PROCESS:
|
499 |
-
# commom configs
|
500 |
-
NUM_BBOX_HEIGHT_BINS: 1000
|
501 |
-
NUM_BBOX_WIDTH_BINS: 1000
|
502 |
-
COORDINATES_HEIGHT_BINS: 1000
|
503 |
-
COORDINATES_WIDTH_BINS: 1000
|
504 |
-
# task specific configs, override the common configs
|
505 |
-
PRASE_TASKS:
|
506 |
-
- TASK_NAME: 'video_dense_caption'
|
507 |
-
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
|
508 |
-
SCORE_MODE: 'avg_cat_name_scores'
|
509 |
-
NUM_BINS: 100
|
510 |
-
- TASK_NAME: 'od'
|
511 |
-
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
|
512 |
-
SCORE_MODE: 'avg_cat_name_scores'
|
513 |
-
Returns:
|
514 |
-
parsed_dict (dict): A dict of parsed results.
|
515 |
-
"""
|
516 |
-
def __init__(
|
517 |
-
self,
|
518 |
-
tokenizer=None
|
519 |
-
):
|
520 |
-
parse_tasks = []
|
521 |
-
parse_task_configs = {}
|
522 |
-
config = self._create_default_config()
|
523 |
-
for task in config['PARSE_TASKS']:
|
524 |
-
parse_tasks.append(task['TASK_NAME'])
|
525 |
-
parse_task_configs[task['TASK_NAME']] = task
|
526 |
-
|
527 |
-
self.config = config
|
528 |
-
self.parse_tasks = parse_tasks
|
529 |
-
self.parse_tasks_configs = parse_task_configs
|
530 |
-
|
531 |
-
self.tokenizer = tokenizer
|
532 |
-
if self.tokenizer is not None:
|
533 |
-
self.all_special_tokens = set(self.tokenizer.all_special_tokens)
|
534 |
-
|
535 |
-
self.init_quantizers()
|
536 |
-
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
|
537 |
-
|
538 |
-
def _create_black_list_of_phrase_grounding(self):
|
539 |
-
black_list = {}
|
540 |
-
|
541 |
-
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
|
542 |
-
black_list = set(
|
543 |
-
['it', 'I', 'me', 'mine',
|
544 |
-
'you', 'your', 'yours',
|
545 |
-
'he', 'him', 'his',
|
546 |
-
'she', 'her', 'hers',
|
547 |
-
'they', 'them', 'their', 'theirs',
|
548 |
-
'one', 'oneself',
|
549 |
-
'we', 'us', 'our', 'ours',
|
550 |
-
'you', 'your', 'yours',
|
551 |
-
'they', 'them', 'their', 'theirs',
|
552 |
-
'mine', 'yours', 'his', 'hers', 'its',
|
553 |
-
'ours', 'yours', 'theirs',
|
554 |
-
'myself', 'yourself', 'himself', 'herself', 'itself',
|
555 |
-
'ourselves', 'yourselves', 'themselves',
|
556 |
-
'this', 'that',
|
557 |
-
'these', 'those',
|
558 |
-
'who', 'whom', 'whose', 'which', 'what',
|
559 |
-
'who', 'whom', 'whose', 'which', 'that',
|
560 |
-
'all', 'another', 'any', 'anybody', 'anyone', 'anything',
|
561 |
-
'each', 'everybody', 'everyone', 'everything',
|
562 |
-
'few', 'many', 'nobody', 'none', 'one', 'several',
|
563 |
-
'some', 'somebody', 'someone', 'something',
|
564 |
-
'each other', 'one another',
|
565 |
-
'myself', 'yourself', 'himself', 'herself', 'itself',
|
566 |
-
'ourselves', 'yourselves', 'themselves',
|
567 |
-
'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
|
568 |
-
'other objects', 'lots', 'a set',
|
569 |
-
]
|
570 |
-
)
|
571 |
-
|
572 |
-
return black_list
|
573 |
-
|
574 |
-
def _create_default_config(self):
|
575 |
-
config = {
|
576 |
-
'NUM_BBOX_HEIGHT_BINS': 1000,
|
577 |
-
'NUM_BBOX_WIDTH_BINS': 1000,
|
578 |
-
'BOX_QUANTIZATION_MODE': 'floor',
|
579 |
-
'COORDINATES_HEIGHT_BINS': 1000,
|
580 |
-
'COORDINATES_WIDTH_BINS': 1000,
|
581 |
-
'COORDINATES_QUANTIZATION_MODE': 'floor',
|
582 |
-
'PARSE_TASKS': [
|
583 |
-
{
|
584 |
-
'TASK_NAME': 'od',
|
585 |
-
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
|
586 |
-
},
|
587 |
-
{
|
588 |
-
'TASK_NAME': 'ocr',
|
589 |
-
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
|
590 |
-
'AREA_THRESHOLD': 0.00
|
591 |
-
},
|
592 |
-
{
|
593 |
-
'TASK_NAME': 'phrase_grounding',
|
594 |
-
'FILTER_BY_BLACK_LIST': True
|
595 |
-
},
|
596 |
-
{
|
597 |
-
'TASK_NAME': 'pure_text',
|
598 |
-
},
|
599 |
-
{
|
600 |
-
'TASK_NAME': 'description_with_bboxes',
|
601 |
-
},
|
602 |
-
{
|
603 |
-
'TASK_NAME': 'description_with_polygons',
|
604 |
-
},
|
605 |
-
{
|
606 |
-
'TASK_NAME': 'polygons',
|
607 |
-
},
|
608 |
-
{
|
609 |
-
'TASK_NAME': 'bboxes',
|
610 |
-
},
|
611 |
-
{
|
612 |
-
'TASK_NAME': 'description_with_bboxes_or_polygons',
|
613 |
-
}
|
614 |
-
]
|
615 |
-
}
|
616 |
-
|
617 |
-
return config
|
618 |
-
|
619 |
-
def init_quantizers(self):
|
620 |
-
# we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
|
621 |
-
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
622 |
-
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
623 |
-
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
624 |
-
self.box_quantizer = BoxQuantizer(
|
625 |
-
box_quantization_mode,
|
626 |
-
(num_bbox_width_bins, num_bbox_height_bins),
|
627 |
-
)
|
628 |
-
|
629 |
-
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
630 |
-
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
631 |
-
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
632 |
-
self.coordinates_quantizer = CoordinatesQuantizer(
|
633 |
-
box_quantization_mode,
|
634 |
-
(num_bbox_width_bins, num_bbox_height_bins),
|
635 |
-
)
|
636 |
-
|
637 |
-
def decode_with_spans(self, tokenizer, token_ids):
|
638 |
-
filtered_tokens = tokenizer.convert_ids_to_tokens(
|
639 |
-
token_ids, skip_special_tokens=False)
|
640 |
-
assert len(filtered_tokens) == len(token_ids)
|
641 |
-
|
642 |
-
# To avoid mixing byte-level and unicode for byte-level BPT
|
643 |
-
# we need to build string separately for added tokens and byte-level tokens
|
644 |
-
# cf. https://github.com/huggingface/transformers/issues/1133
|
645 |
-
sub_texts = []
|
646 |
-
for token in filtered_tokens:
|
647 |
-
if token in self.all_special_tokens:
|
648 |
-
sub_texts.append(token)
|
649 |
-
else:
|
650 |
-
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
|
651 |
-
sub_text = tokenizer.convert_tokens_to_string([token])
|
652 |
-
elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
|
653 |
-
# Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
|
654 |
-
# Note: Do not strip sub_text as it may have functional whitespace
|
655 |
-
sub_text = token.replace('▁', ' ')
|
656 |
-
else:
|
657 |
-
raise ValueError(f'type {type(tokenizer)} not supported')
|
658 |
-
sub_texts.append(sub_text)
|
659 |
-
|
660 |
-
text = ''
|
661 |
-
spans = []
|
662 |
-
for sub_text in sub_texts:
|
663 |
-
span = (len(text), len(text) + len(sub_text)) # [start index, end index).
|
664 |
-
text += sub_text
|
665 |
-
spans.append(span)
|
666 |
-
|
667 |
-
# Text format:
|
668 |
-
# 1. T5Tokenizer/T5TokenizerFast:
|
669 |
-
# "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
|
670 |
-
# Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
671 |
-
# 2. BartTokenizer (need to double check):
|
672 |
-
# "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
|
673 |
-
# Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
674 |
-
return text, spans
|
675 |
-
|
676 |
-
def parse_od_from_text_and_spans(
|
677 |
-
self,
|
678 |
-
text,
|
679 |
-
pattern,
|
680 |
-
image_size,
|
681 |
-
phrase_centric=False
|
682 |
-
):
|
683 |
-
parsed = list(re.finditer(pattern, text))
|
684 |
-
|
685 |
-
instances = []
|
686 |
-
for i in range(len(parsed)):
|
687 |
-
# Prepare instance.
|
688 |
-
instance = {}
|
689 |
-
|
690 |
-
if phrase_centric:
|
691 |
-
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
|
692 |
-
else:
|
693 |
-
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
|
694 |
-
instance['bbox'] = self.box_quantizer.dequantize(
|
695 |
-
boxes=torch.tensor(bbox_bins),
|
696 |
-
size=image_size
|
697 |
-
).tolist()
|
698 |
-
|
699 |
-
if phrase_centric:
|
700 |
-
instance['cat_name'] = parsed[i].group(1).lower().strip()
|
701 |
-
else:
|
702 |
-
instance['cat_name'] = parsed[i].group(5).lower().strip()
|
703 |
-
instances.append(instance)
|
704 |
-
|
705 |
-
return instances
|
706 |
-
|
707 |
-
def parse_ocr_from_text_and_spans(self,
|
708 |
-
text,
|
709 |
-
pattern,
|
710 |
-
image_size,
|
711 |
-
area_threshold=-1.0,
|
712 |
-
):
|
713 |
-
bboxes = []
|
714 |
-
labels = []
|
715 |
-
text = text.replace('<s>', '')
|
716 |
-
# ocr with regions
|
717 |
-
parsed = re.findall(pattern, text)
|
718 |
-
instances = []
|
719 |
-
image_width, image_height = image_size
|
720 |
-
|
721 |
-
for ocr_line in parsed:
|
722 |
-
ocr_content = ocr_line[0]
|
723 |
-
quad_box = ocr_line[1:]
|
724 |
-
quad_box = [int(i) for i in quad_box]
|
725 |
-
quad_box = self.coordinates_quantizer.dequantize(
|
726 |
-
torch.tensor(np.array(quad_box).reshape(-1, 2)),
|
727 |
-
size=image_size
|
728 |
-
).reshape(-1).tolist()
|
729 |
-
|
730 |
-
if area_threshold > 0:
|
731 |
-
x_coords = [i for i in quad_box[0::2]]
|
732 |
-
y_coords = [i for i in quad_box[1::2]]
|
733 |
-
|
734 |
-
# apply the Shoelace formula
|
735 |
-
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
|
736 |
-
|
737 |
-
if area < (image_width * image_height) * area_threshold:
|
738 |
-
continue
|
739 |
-
|
740 |
-
bboxes.append(quad_box)
|
741 |
-
labels.append(ocr_content)
|
742 |
-
instances.append({
|
743 |
-
'quad_box': quad_box,
|
744 |
-
'text': ocr_content,
|
745 |
-
})
|
746 |
-
return instances
|
747 |
-
|
748 |
-
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
|
749 |
-
# ignore <s> </s> and <pad>
|
750 |
-
cur_span = 0
|
751 |
-
if text.startswith('<s>'):
|
752 |
-
cur_span += 3
|
753 |
-
|
754 |
-
text = text.replace('<s>', '')
|
755 |
-
text = text.replace('</s>', '')
|
756 |
-
text = text.replace('<pad>', '')
|
757 |
-
|
758 |
-
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
759 |
-
phrases = re.findall(pattern, text)
|
760 |
-
|
761 |
-
# pattern should be text pattern and od pattern
|
762 |
-
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
763 |
-
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
764 |
-
|
765 |
-
instances = []
|
766 |
-
for pharse_text in phrases:
|
767 |
-
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
768 |
-
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
769 |
-
|
770 |
-
if phrase_text_strip == '':
|
771 |
-
cur_span += len(pharse_text)
|
772 |
-
continue
|
773 |
-
|
774 |
-
# Prepare instance.
|
775 |
-
instance = {}
|
776 |
-
|
777 |
-
# parse phrase, get string
|
778 |
-
phrase = re.search(pattern, phrase_text_strip)
|
779 |
-
if phrase is None:
|
780 |
-
cur_span += len(pharse_text)
|
781 |
-
continue
|
782 |
-
|
783 |
-
# parse bboxes by box_pattern
|
784 |
-
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
785 |
-
if len(bboxes_parsed) == 0:
|
786 |
-
cur_span += len(pharse_text)
|
787 |
-
continue
|
788 |
-
|
789 |
-
phrase = phrase.group()
|
790 |
-
# remove leading and trailing spaces
|
791 |
-
phrase = phrase.strip()
|
792 |
-
|
793 |
-
if phrase in self.black_list_of_phrase_grounding:
|
794 |
-
cur_span += len(pharse_text)
|
795 |
-
continue
|
796 |
-
|
797 |
-
# a list of list
|
798 |
-
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
799 |
-
instance['bbox'] = self.box_quantizer.dequantize(
|
800 |
-
boxes=torch.tensor(bbox_bins),
|
801 |
-
size=image_size
|
802 |
-
).tolist()
|
803 |
-
|
804 |
-
# exclude non-ascii characters
|
805 |
-
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
806 |
-
instance['cat_name'] = phrase
|
807 |
-
|
808 |
-
instances.append(instance)
|
809 |
-
|
810 |
-
return instances
|
811 |
-
|
812 |
-
def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
|
813 |
-
# temporary parse solution, split by '.'
|
814 |
-
# ignore <s> </s> and <pad>
|
815 |
-
|
816 |
-
text = text.replace('<s>', '')
|
817 |
-
text = text.replace('</s>', '')
|
818 |
-
text = text.replace('<pad>', '')
|
819 |
-
|
820 |
-
if allow_empty_phrase:
|
821 |
-
pattern = rf"(?:(?:<loc_\d+>){{4,}})"
|
822 |
-
else:
|
823 |
-
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
824 |
-
phrases = re.findall(pattern, text)
|
825 |
-
|
826 |
-
# pattern should be text pattern and od pattern
|
827 |
-
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
828 |
-
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
829 |
-
|
830 |
-
instances = []
|
831 |
-
for pharse_text in phrases:
|
832 |
-
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
833 |
-
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
834 |
-
|
835 |
-
if phrase_text_strip == '' and not allow_empty_phrase:
|
836 |
-
continue
|
837 |
-
|
838 |
-
# parse phrase, get string
|
839 |
-
phrase = re.search(pattern, phrase_text_strip)
|
840 |
-
if phrase is None:
|
841 |
-
continue
|
842 |
-
|
843 |
-
phrase = phrase.group()
|
844 |
-
# remove leading and trailing spaces
|
845 |
-
phrase = phrase.strip()
|
846 |
-
|
847 |
-
# parse bboxes by box_pattern
|
848 |
-
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
849 |
-
if len(bboxes_parsed) == 0:
|
850 |
-
continue
|
851 |
-
|
852 |
-
# a list of list
|
853 |
-
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
854 |
-
|
855 |
-
bboxes = self.box_quantizer.dequantize(
|
856 |
-
boxes=torch.tensor(bbox_bins),
|
857 |
-
size=image_size
|
858 |
-
).tolist()
|
859 |
-
|
860 |
-
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
861 |
-
for _bboxes in bboxes:
|
862 |
-
# Prepare instance.
|
863 |
-
instance = {}
|
864 |
-
instance['bbox'] = _bboxes
|
865 |
-
# exclude non-ascii characters
|
866 |
-
instance['cat_name'] = phrase
|
867 |
-
instances.append(instance)
|
868 |
-
|
869 |
-
return instances
|
870 |
-
|
871 |
-
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
|
872 |
-
allow_empty_phrase=False,
|
873 |
-
polygon_sep_token='<sep>',
|
874 |
-
polygon_start_token='<poly>',
|
875 |
-
polygon_end_token='</poly>',
|
876 |
-
with_box_at_start=False,
|
877 |
-
):
|
878 |
-
|
879 |
-
# ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
|
880 |
-
# ignore <s> </s> and <pad>
|
881 |
-
|
882 |
-
text = text.replace('<s>', '')
|
883 |
-
text = text.replace('</s>', '')
|
884 |
-
text = text.replace('<pad>', '')
|
885 |
-
|
886 |
-
if allow_empty_phrase:
|
887 |
-
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
888 |
-
else:
|
889 |
-
# [^<]+: This part matches one or more characters that are not the < symbol.
|
890 |
-
# The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
|
891 |
-
#
|
892 |
-
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
893 |
-
phrases = re.findall(pattern, text)
|
894 |
-
|
895 |
-
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
|
896 |
-
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
|
897 |
-
|
898 |
-
# one polygons instance is separated by polygon_start_token and polygon_end_token
|
899 |
-
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
|
900 |
-
|
901 |
-
instances = []
|
902 |
-
for phrase_text in phrases:
|
903 |
-
|
904 |
-
# exclude loc_\d+>
|
905 |
-
# need to get span if want to include category score
|
906 |
-
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
|
907 |
-
|
908 |
-
# phrase = phrase.replace('<poly>', '')
|
909 |
-
# phrase = phrase.replace('poly>', '')
|
910 |
-
|
911 |
-
if phrase_text_strip == '' and not allow_empty_phrase:
|
912 |
-
continue
|
913 |
-
|
914 |
-
|
915 |
-
# parse phrase, get string
|
916 |
-
phrase = re.search(phrase_string_pattern, phrase_text_strip)
|
917 |
-
if phrase is None:
|
918 |
-
continue
|
919 |
-
phrase = phrase.group()
|
920 |
-
# remove leading and trailing spaces
|
921 |
-
phrase = phrase.strip()
|
922 |
-
|
923 |
-
# parse bboxes by box_pattern
|
924 |
-
|
925 |
-
# split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
|
926 |
-
if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
|
927 |
-
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
|
928 |
-
else:
|
929 |
-
polygons_instances_parsed = [phrase_text]
|
930 |
-
|
931 |
-
for _polygons_instances_parsed in polygons_instances_parsed:
|
932 |
-
# Prepare instance.
|
933 |
-
instance = {}
|
934 |
-
|
935 |
-
# polygons_parsed= list(re.finditer(box_pattern, phrase_text))
|
936 |
-
if isinstance(_polygons_instances_parsed, str):
|
937 |
-
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
|
938 |
-
else:
|
939 |
-
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
|
940 |
-
if len(polygons_parsed) == 0:
|
941 |
-
continue
|
942 |
-
|
943 |
-
# a list of list (polygon)
|
944 |
-
bbox = []
|
945 |
-
polygons = []
|
946 |
-
for _polygon_parsed in polygons_parsed:
|
947 |
-
# group 1: whole <loc_\d+>...</loc_\d+>
|
948 |
-
_polygon = _polygon_parsed.group(1)
|
949 |
-
# parse into list of int
|
950 |
-
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
|
951 |
-
if with_box_at_start and len(bbox) == 0:
|
952 |
-
if len(_polygon) > 4:
|
953 |
-
# no valid bbox prediction
|
954 |
-
bbox = _polygon[:4]
|
955 |
-
_polygon = _polygon[4:]
|
956 |
-
else:
|
957 |
-
bbox = [0, 0, 0, 0]
|
958 |
-
# abandon last element if is not paired
|
959 |
-
if len(_polygon) % 2 == 1:
|
960 |
-
_polygon = _polygon[:-1]
|
961 |
-
|
962 |
-
# reshape into (n, 2)
|
963 |
-
_polygon = self.coordinates_quantizer.dequantize(
|
964 |
-
torch.tensor(np.array(_polygon).reshape(-1, 2)),
|
965 |
-
size=image_size
|
966 |
-
).reshape(-1).tolist()
|
967 |
-
# reshape back
|
968 |
-
polygons.append(_polygon)
|
969 |
-
|
970 |
-
instance['cat_name'] = phrase
|
971 |
-
instance['polygons'] = polygons
|
972 |
-
if len(bbox) != 0:
|
973 |
-
instance['bbox'] = self.box_quantizer.dequantize(
|
974 |
-
boxes=torch.tensor([bbox]),
|
975 |
-
size=image_size
|
976 |
-
).tolist()[0]
|
977 |
-
|
978 |
-
instances.append(instance)
|
979 |
-
|
980 |
-
return instances
|
981 |
-
|
982 |
-
def __call__(
|
983 |
-
self,
|
984 |
-
text=None,
|
985 |
-
image_size=None,
|
986 |
-
parse_tasks=None,
|
987 |
-
):
|
988 |
-
"""
|
989 |
-
Args:
|
990 |
-
text: model outputs
|
991 |
-
image_size: (width, height)
|
992 |
-
parse_tasks: a list of tasks to parse, if None, parse all tasks.
|
993 |
-
"""
|
994 |
-
if parse_tasks is not None:
|
995 |
-
if isinstance(parse_tasks, str):
|
996 |
-
parse_tasks = [parse_tasks]
|
997 |
-
for _parse_task in parse_tasks:
|
998 |
-
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
|
999 |
-
|
1000 |
-
# sequence or text should be provided
|
1001 |
-
assert text is not None, 'text should be provided'
|
1002 |
-
|
1003 |
-
parsed_dict = {
|
1004 |
-
'text': text
|
1005 |
-
}
|
1006 |
-
|
1007 |
-
for task in self.parse_tasks:
|
1008 |
-
if parse_tasks is not None and task not in parse_tasks:
|
1009 |
-
continue
|
1010 |
-
|
1011 |
-
pattern = self.parse_tasks_configs[task].get('PATTERN', None)
|
1012 |
-
|
1013 |
-
if task == 'ocr':
|
1014 |
-
instances = self.parse_ocr_from_text_and_spans(
|
1015 |
-
text,
|
1016 |
-
pattern=pattern,
|
1017 |
-
image_size=image_size,
|
1018 |
-
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
|
1019 |
-
)
|
1020 |
-
parsed_dict['ocr'] = instances
|
1021 |
-
elif task == 'phrase_grounding':
|
1022 |
-
instances = self.parse_phrase_grounding_from_text_and_spans(
|
1023 |
-
text,
|
1024 |
-
pattern=pattern,
|
1025 |
-
image_size=image_size,
|
1026 |
-
)
|
1027 |
-
parsed_dict['phrase_grounding'] = instances
|
1028 |
-
elif task == 'pure_text':
|
1029 |
-
parsed_dict['pure_text'] = text
|
1030 |
-
elif task == 'description_with_bboxes':
|
1031 |
-
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1032 |
-
text,
|
1033 |
-
pattern=pattern,
|
1034 |
-
image_size=image_size,
|
1035 |
-
)
|
1036 |
-
parsed_dict['description_with_bboxes'] = instances
|
1037 |
-
elif task == 'description_with_polygons':
|
1038 |
-
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1039 |
-
text,
|
1040 |
-
pattern=pattern,
|
1041 |
-
image_size=image_size,
|
1042 |
-
)
|
1043 |
-
parsed_dict['description_with_polygons'] = instances
|
1044 |
-
elif task == 'polygons':
|
1045 |
-
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1046 |
-
text,
|
1047 |
-
pattern=pattern,
|
1048 |
-
image_size=image_size,
|
1049 |
-
allow_empty_phrase=True,
|
1050 |
-
)
|
1051 |
-
parsed_dict['polygons'] = instances
|
1052 |
-
elif task == 'bboxes':
|
1053 |
-
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1054 |
-
text,
|
1055 |
-
pattern=pattern,
|
1056 |
-
image_size=image_size,
|
1057 |
-
allow_empty_phrase=True,
|
1058 |
-
)
|
1059 |
-
parsed_dict['bboxes'] = instances
|
1060 |
-
elif task == 'description_with_bboxes_or_polygons':
|
1061 |
-
if '<poly>' in text:
|
1062 |
-
# only support either polygons or bboxes, not both at the same time
|
1063 |
-
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1064 |
-
text,
|
1065 |
-
pattern=pattern,
|
1066 |
-
image_size=image_size,
|
1067 |
-
)
|
1068 |
-
else:
|
1069 |
-
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1070 |
-
text,
|
1071 |
-
pattern=pattern,
|
1072 |
-
image_size=image_size,
|
1073 |
-
)
|
1074 |
-
parsed_dict['description_with_bboxes_or_polygons'] = instances
|
1075 |
-
else:
|
1076 |
-
raise ValueError("task {} is not supported".format(task))
|
1077 |
-
|
1078 |
-
return parsed_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|