File size: 1,304 Bytes
3511928
 
 
 
6fb81ae
f5b15b8
3511928
 
 
8bf721c
 
 
 
 
dcbd7ca
 
 
 
496fe8c
dcbd7ca
 
826333a
dcbd7ca
 
 
 
 
824d373
dcbd7ca
 
 
 
 
 
 
 
 
 
 
826333a
 
dcbd7ca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: apache-2.0
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
library_name: transformers
pipeline_tag: text-generation
---


<h1 align="center">🏠 Socials</h1>
<p align="center">
  🤗 <a href="https://huggingface.co/VitalContribution" target="_blank">HF Repo</a> • 🐦 <a href="https://twitter.com/VContribution" target="_blank">Twitter</a> 
</p>

# Evangelion-7B

I was just curious to see if something special might happen if one uses:
$$
\text{{high-quality DPO dataset}} + \text{{merge of DPO optimized and non-DPO optimized model}}
$$

The underlying model that I used was `/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp`.  


# Dataset
Dataset: `/argilla/distilabel-intel-orca-dpo-pairs`

The dataset was roughly ~3000 samples but they were high quality (according to the chosen_score).  
The following filters were applied to the original dataset:
```python
dataset = dataset.filter(
    lambda r:
        r["status"] != "tie" and
        r["chosen_score"] >= 8 and
        not r["in_gsm8k_train"]
)
```

# Chat Template
I decided to go with the ChatML which is used for OpenHermes2.5
By the way I integreated the chat template into the models tokenizer.
```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
```