|
import jax |
|
print(jax.local_device_count()) |
|
import jax.numpy as jnp |
|
|
|
import flax |
|
import flax.linen as nn |
|
from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key |
|
from flax.training import train_state |
|
from flax.metrics.tensorboard import SummaryWriter |
|
from flax.training import checkpoints |
|
|
|
from datasets import load_dataset,load_metric |
|
from transformers import GPT2Tokenizer |
|
|
|
from tqdm import tqdm |
|
|
|
import logging |
|
import optax |
|
import math |
|
from pathlib import Path |
|
from typing import Callable |
|
from itertools import chain |
|
from flax.metrics import tensorboard |
|
from datasets import load_dataset,load_metric |
|
|
|
from transformers import GPTNeoConfig,GPT2Tokenizer |
|
|
|
from model_file import FlaxGPTNeoForMultipleChoice |
|
|
|
logger = logging.getLogger() |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>') |
|
|
|
dataset=load_dataset('hellaswag') |
|
num_choices=4 |
|
|
|
def preprocess(example): |
|
example['first_sentence']=[example['ctx_a']]*num_choices |
|
example['second_sentence']=[example['ctx_b']+' '+example['endings'][i] for i in range(num_choices)] |
|
return example |
|
|
|
train_dataset=dataset['train'].map(preprocess) |
|
validation_dataset=dataset['validation'].map(preprocess) |
|
test_dataset=dataset['test'].map(preprocess) |
|
|
|
len_train_dataset=39905 |
|
len_validation_dataset=10042 |
|
len_test_dataset=10003 |
|
|
|
train_dataset=train_dataset.select(range(len_train_dataset)) |
|
test_dataset=test_dataset.select(range(len_test_dataset)) |
|
validation_dataset=validation_dataset.select(range(len_validation_dataset)) |
|
|
|
remove_col=train_dataset.column_names |
|
|
|
def tokenize(examples): |
|
tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') |
|
tokenized_examples['labels']=int(examples['label']) |
|
return tokenized_examples |
|
|
|
train_dataset=train_dataset.map(tokenize) |
|
validation_dataset=validation_dataset.map(tokenize) |
|
|
|
|
|
train_dataset=train_dataset.remove_columns(remove_col) |
|
validation_dataset=validation_dataset.remove_columns(remove_col) |
|
test_dataset=test_dataset.remove_columns(remove_col) |
|
|
|
per_device_batch_size=2 |
|
seed=0 |
|
num_train_epochs=3 |
|
learning_rate=2e-5 |
|
|
|
model = FlaxGPTNeoForMultipleChoice.from_pretrained('EleutherAI/gpt-neo-1.3B',input_shape=(1,num_choices,1)) |
|
|
|
total_batch_size = per_device_batch_size * jax.local_device_count() |
|
print('The overall batch size (both for training and eval) is', total_batch_size) |
|
num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs |
|
num_validation_steps=len(validation_dataset)//total_batch_size*num_train_epochs |
|
|
|
learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=3e-7, transition_steps=num_train_steps) |
|
|
|
class TrainState(train_state.TrainState): |
|
logits_function:Callable=flax.struct.field(pytree_node=False) |
|
loss_function:Callable=flax.struct.field(pytree_node=False) |
|
|
|
def adamw(weight_decay): |
|
return optax.adafactor(learning_rate=learning_rate_function) |
|
|
|
decay_path=lambda p:not any(x in p for x in ['bias','LayerNorm.weight']) |
|
|
|
def traverse(function): |
|
def mask(data): |
|
flat=flax.traverse_util.flatten_dict(data) |
|
return flax.traverse_util.unflatten_dict({k:function(k,v) for k,v in flat.items()}) |
|
return mask |
|
gradient_transformation=optax.chain( |
|
optax.masked(adamw(0.0),mask=traverse(lambda path,_:decay_path(path))), |
|
optax.masked(adamw(0.01),mask=traverse(lambda path,_:not decay_path(path)))) |
|
|
|
def loss_function(logits,labels): |
|
logits=flax.linen.log_softmax(logits) |
|
xentropy=optax.softmax_cross_entropy(logits,onehot(labels,num_classes=num_choices)) |
|
return jnp.mean(xentropy) |
|
|
|
def eval_function(logits): |
|
return logits.argmax(-1) |
|
|
|
state=TrainState.create(apply_fn=model.__call__, |
|
params=model.params, |
|
tx=gradient_transformation, |
|
logits_function=eval_function, |
|
loss_function=loss_function) |
|
|
|
def train_step(state,batch,dropout_rng): |
|
targets=batch.pop("labels") |
|
dropout_rng,new_dropout_rng=jax.random.split(dropout_rng) |
|
def loss_function(params): |
|
logits=state.apply_fn(**batch,params=params,dropout_rng=dropout_rng,train=True)[0] |
|
loss=state.loss_function(logits,targets) |
|
return loss |
|
grad_function=jax.value_and_grad(loss_function) |
|
loss,grad=grad_function(state.params) |
|
grad=jax.lax.pmean(grad,"batch") |
|
new_state=state.apply_gradients(grads=grad) |
|
|
|
logits=new_state.apply_fn(**batch,params=new_state.params,dropout_rng=dropout_rng,train=True)[0] |
|
accuracy=jnp.equal(jnp.argmax(logits,axis=-1),targets) |
|
metrics=jax.lax.pmean({"loss":jax.device_get(loss),"learning_rate":jax.device_get(learning_rate_function(state.step)),'accuracy':jax.device_get(accuracy)},axis_name="batch") |
|
|
|
return new_state,metrics,new_dropout_rng |
|
|
|
parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) |
|
|
|
def eval_step(state, batch): |
|
targets=batch.pop('labels') |
|
logits = state.apply_fn(**batch, params=state.params, train=False) |
|
loss=state.loss_function(logits,targets) |
|
predictions=state.logits_function(logits) |
|
eval_accuracy=jnp.equal(predictions,targets) |
|
|
|
metrics=jax.lax.pmean({"loss":jax.device_get(loss),'accuracy':jax.device_get(eval_accuracy)},axis_name="batch") |
|
|
|
|
|
return targets,predictions,metrics |
|
|
|
parallel_eval_step = jax.pmap(eval_step, axis_name="batch") |
|
|
|
def glue_train_data_loader(rng,dataset,batch_size): |
|
steps_per_epoch=len_train_dataset//batch_size |
|
perms=jax.random.permutation(rng,len_train_dataset) |
|
perms=perms[:steps_per_epoch*batch_size] |
|
perms=perms.reshape((steps_per_epoch,batch_size)) |
|
for perm in perms: |
|
batch=dataset[perm] |
|
|
|
batch={k:jnp.array(v) for k,v in batch.items()} |
|
batch=shard(batch) |
|
yield batch |
|
|
|
rng=jax.random.PRNGKey(seed) |
|
dropout_rngs=jax.random.split(rng,jax.local_device_count()) |
|
|
|
def glue_eval_data_loader(dataset, batch_size): |
|
for i in range(len_validation_dataset // batch_size): |
|
batch = dataset[i * batch_size : (i + 1) * batch_size] |
|
batch = {k: jnp.array(v) for k, v in batch.items()} |
|
batch = shard(batch) |
|
yield batch |
|
|
|
state = flax.jax_utils.replicate(state) |
|
|
|
actual_task = "mnli" |
|
metric = load_metric('glue', "mnli") |
|
actual_taskmetric = load_metric('glue', actual_task) |
|
|
|
workdir='../results_tensorboard' |
|
summary_writer = tensorboard.SummaryWriter(workdir) |
|
|
|
logger.info(f"***** Running training *****") |
|
logger.info(f" Num examples = {len_train_dataset}") |
|
logger.info(f" Num Epochs = {num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {per_device_batch_size}") |
|
logger.info(f" Total train batch size = {total_batch_size}") |
|
logger.info(f" Total optimization steps = {num_train_steps}") |
|
|
|
for i, epoch in enumerate(tqdm(range(1, num_train_epochs+1), desc=f"Epoch ...", position=0, leave=True)): |
|
rng, input_rng = jax.random.split(rng) |
|
train_acc_metrics=[] |
|
train_loss_metrics=[] |
|
eval_acc_metrics=[] |
|
eval_loss_metrics=[] |
|
|
|
with tqdm(total=len_train_dataset // total_batch_size, desc="Training...", leave=False) as progress_bar_train: |
|
for idx,batch in enumerate(glue_train_data_loader(input_rng, train_dataset, total_batch_size)): |
|
state, train_metric, dropout_rngs = parallel_train_step(state, batch, dropout_rngs) |
|
train_acc_metrics.append(jax.device_get(train_metric['accuracy']).mean().item()) |
|
train_loss_metrics.append(flax.jax_utils.unreplicate(train_metric)['loss'].item()) |
|
if idx%5==0: |
|
summary_writer.scalar('train_loss',flax.jax_utils.unreplicate(train_metric)['loss'].item(),idx) |
|
summary_writer.scalar('train_accuracy', jax.device_get(train_metric['accuracy']).mean().item(),idx) |
|
if idx%20==0: |
|
logger.info(f"train_step_loss{idx}: {flax.jax_utils.unreplicate(train_metric)['loss'].item()} train_step_acc{idx}: {jax.device_get(train_metric['accuracy']).mean().item()} ") |
|
|
|
progress_bar_train.update(1) |
|
|
|
|
|
with tqdm(total=len_validation_dataset // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval: |
|
for idx,batch in enumerate(glue_eval_data_loader(validation_dataset, total_batch_size)): |
|
labels,predictions,eval_metric=parallel_eval_step(state, batch) |
|
eval_acc_metrics.append(jax.device_get(eval_metric['accuracy']).mean().item()) |
|
eval_loss_metrics.append(flax.jax_utils.unreplicate(eval_metric)['loss'].item()) |
|
progress_bar_eval.update(1) |
|
if idx%5==0: |
|
logger.info(f"eval_step_loss {idx} : {flax.jax_utils.unreplicate(eval_metric)['loss'].item()} eval_step_acc {idx} : {jax.device_get(eval_metric['accuracy']).mean().item()}") |
|
summary_writer.scalar('eval_loss : ', flax.jax_utils.unreplicate(eval_metric)['loss'].item(),idx) |
|
summary_writer.scalar('eval_accuracy : ', jax.device_get(eval_metric['accuracy']).mean().item(),idx) |
|
|
|
logger.info(f"---------------------Epoch {epoch} done-----------------") |
|
logger.info(f"Train loss: {jax.device_get(jnp.array(train_loss_metrics)).mean().item()} Train accuracy: {jax.device_get(jnp.array(train_acc_metrics)).mean().item()}") |
|
logger.info(f"Eval loss: {jax.device_get(jnp.array(eval_loss_metrics)).mean().item()} Eval accuracy: {jax.device_get(jnp.array(eval_acc_metrics)).mean().item()}") |
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) |
|
|
|
model.save_pretrained( |
|
'../', |
|
params=params, |
|
push_to_hub=True, |
|
commit_message=f"Saving weights of epoch {epoch} at step {idx}",) |
|
|
|
summary_writer.flush() |
|
|