import jax print(jax.local_device_count()) import jax.numpy as jnp import flax import flax.linen as nn from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key from flax.training import train_state from flax.metrics.tensorboard import SummaryWriter from flax.training import checkpoints from datasets import load_dataset,load_metric from transformers import GPT2Tokenizer from tqdm import tqdm import logging import optax import math from pathlib import Path from typing import Callable from itertools import chain from flax.metrics import tensorboard from datasets import load_dataset,load_metric from transformers import GPTNeoConfig,GPT2Tokenizer from model_file import FlaxGPTNeoForMultipleChoice logger = logging.getLogger() logger.setLevel(logging.INFO) tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>') dataset=load_dataset('hellaswag') num_choices=4 def preprocess(example): example['first_sentence']=[example['ctx_a']]*num_choices example['second_sentence']=[example['ctx_b']+' '+example['endings'][i] for i in range(num_choices)] return example train_dataset=dataset['train'].map(preprocess) validation_dataset=dataset['validation'].map(preprocess) test_dataset=dataset['test'].map(preprocess) len_train_dataset=39905 len_validation_dataset=10042 len_test_dataset=10003 train_dataset=train_dataset.select(range(len_train_dataset)) test_dataset=test_dataset.select(range(len_test_dataset)) validation_dataset=validation_dataset.select(range(len_validation_dataset)) remove_col=train_dataset.column_names def tokenize(examples): tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') tokenized_examples['labels']=int(examples['label']) return tokenized_examples train_dataset=train_dataset.map(tokenize) validation_dataset=validation_dataset.map(tokenize) #test_dataset=test_dataset.map(tokenize) train_dataset=train_dataset.remove_columns(remove_col) validation_dataset=validation_dataset.remove_columns(remove_col) test_dataset=test_dataset.remove_columns(remove_col) per_device_batch_size=2 seed=0 num_train_epochs=3 learning_rate=2e-5 model = FlaxGPTNeoForMultipleChoice.from_pretrained('EleutherAI/gpt-neo-1.3B',input_shape=(1,num_choices,1)) total_batch_size = per_device_batch_size * jax.local_device_count() print('The overall batch size (both for training and eval) is', total_batch_size) num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs num_validation_steps=len(validation_dataset)//total_batch_size*num_train_epochs learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=3e-7, transition_steps=num_train_steps) class TrainState(train_state.TrainState): logits_function:Callable=flax.struct.field(pytree_node=False) loss_function:Callable=flax.struct.field(pytree_node=False) def adamw(weight_decay): return optax.adafactor(learning_rate=learning_rate_function) decay_path=lambda p:not any(x in p for x in ['bias','LayerNorm.weight']) def traverse(function): def mask(data): flat=flax.traverse_util.flatten_dict(data) return flax.traverse_util.unflatten_dict({k:function(k,v) for k,v in flat.items()}) return mask gradient_transformation=optax.chain( optax.masked(adamw(0.0),mask=traverse(lambda path,_:decay_path(path))), optax.masked(adamw(0.01),mask=traverse(lambda path,_:not decay_path(path)))) def loss_function(logits,labels): logits=flax.linen.log_softmax(logits) xentropy=optax.softmax_cross_entropy(logits,onehot(labels,num_classes=num_choices)) return jnp.mean(xentropy) def eval_function(logits): return logits.argmax(-1) state=TrainState.create(apply_fn=model.__call__, params=model.params, tx=gradient_transformation, logits_function=eval_function, loss_function=loss_function) def train_step(state,batch,dropout_rng): targets=batch.pop("labels") dropout_rng,new_dropout_rng=jax.random.split(dropout_rng) def loss_function(params): logits=state.apply_fn(**batch,params=params,dropout_rng=dropout_rng,train=True)[0] loss=state.loss_function(logits,targets) return loss grad_function=jax.value_and_grad(loss_function) loss,grad=grad_function(state.params) grad=jax.lax.pmean(grad,"batch") new_state=state.apply_gradients(grads=grad) #Added. logits=new_state.apply_fn(**batch,params=new_state.params,dropout_rng=dropout_rng,train=True)[0] accuracy=jnp.equal(jnp.argmax(logits,axis=-1),targets) metrics=jax.lax.pmean({"loss":jax.device_get(loss),"learning_rate":jax.device_get(learning_rate_function(state.step)),'accuracy':jax.device_get(accuracy)},axis_name="batch") #metrics=jax.lax.pmean({"loss":loss,"learning_rate":learning_rate_function(state.step),'accuracy':accuracy},axis_name="batch") return new_state,metrics,new_dropout_rng parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) def eval_step(state, batch): targets=batch.pop('labels') logits = state.apply_fn(**batch, params=state.params, train=False) loss=state.loss_function(logits,targets) predictions=state.logits_function(logits) eval_accuracy=jnp.equal(predictions,targets) #eval_acc=jnp.equal(predictions,targets) metrics=jax.lax.pmean({"loss":jax.device_get(loss),'accuracy':jax.device_get(eval_accuracy)},axis_name="batch") #metrics=jax.lax.pmean({"loss":loss,'accuracy':eval_accuracy},axis_name="batch") #return state.logits_function(logits) #(8,4) return targets,predictions,metrics parallel_eval_step = jax.pmap(eval_step, axis_name="batch") def glue_train_data_loader(rng,dataset,batch_size): steps_per_epoch=len_train_dataset//batch_size perms=jax.random.permutation(rng,len_train_dataset) perms=perms[:steps_per_epoch*batch_size] perms=perms.reshape((steps_per_epoch,batch_size)) for perm in perms: batch=dataset[perm] #print(jnp.array(batch['label'])) batch={k:jnp.array(v) for k,v in batch.items()} batch=shard(batch) yield batch rng=jax.random.PRNGKey(seed) dropout_rngs=jax.random.split(rng,jax.local_device_count()) def glue_eval_data_loader(dataset, batch_size): for i in range(len_validation_dataset // batch_size): batch = dataset[i * batch_size : (i + 1) * batch_size] batch = {k: jnp.array(v) for k, v in batch.items()} batch = shard(batch) yield batch state = flax.jax_utils.replicate(state) actual_task = "mnli" metric = load_metric('glue', "mnli") actual_taskmetric = load_metric('glue', actual_task) workdir='../results_tensorboard' summary_writer = tensorboard.SummaryWriter(workdir) logger.info(f"***** Running training *****") logger.info(f" Num examples = {len_train_dataset}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {per_device_batch_size}") logger.info(f" Total train batch size = {total_batch_size}") logger.info(f" Total optimization steps = {num_train_steps}") for i, epoch in enumerate(tqdm(range(1, num_train_epochs+1), desc=f"Epoch ...", position=0, leave=True)): rng, input_rng = jax.random.split(rng) train_acc_metrics=[] train_loss_metrics=[] eval_acc_metrics=[] eval_loss_metrics=[] # train with tqdm(total=len_train_dataset // total_batch_size, desc="Training...", leave=False) as progress_bar_train: for idx,batch in enumerate(glue_train_data_loader(input_rng, train_dataset, total_batch_size)): state, train_metric, dropout_rngs = parallel_train_step(state, batch, dropout_rngs) train_acc_metrics.append(jax.device_get(train_metric['accuracy']).mean().item()) train_loss_metrics.append(flax.jax_utils.unreplicate(train_metric)['loss'].item()) if idx%5==0: summary_writer.scalar('train_loss',flax.jax_utils.unreplicate(train_metric)['loss'].item(),idx) summary_writer.scalar('train_accuracy', jax.device_get(train_metric['accuracy']).mean().item(),idx) if idx%20==0: logger.info(f"train_step_loss{idx}: {flax.jax_utils.unreplicate(train_metric)['loss'].item()} train_step_acc{idx}: {jax.device_get(train_metric['accuracy']).mean().item()} ") progress_bar_train.update(1) # evaluate with tqdm(total=len_validation_dataset // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval: for idx,batch in enumerate(glue_eval_data_loader(validation_dataset, total_batch_size)): labels,predictions,eval_metric=parallel_eval_step(state, batch) eval_acc_metrics.append(jax.device_get(eval_metric['accuracy']).mean().item()) eval_loss_metrics.append(flax.jax_utils.unreplicate(eval_metric)['loss'].item()) progress_bar_eval.update(1) if idx%5==0: logger.info(f"eval_step_loss {idx} : {flax.jax_utils.unreplicate(eval_metric)['loss'].item()} eval_step_acc {idx} : {jax.device_get(eval_metric['accuracy']).mean().item()}") summary_writer.scalar('eval_loss : ', flax.jax_utils.unreplicate(eval_metric)['loss'].item(),idx) summary_writer.scalar('eval_accuracy : ', jax.device_get(eval_metric['accuracy']).mean().item(),idx) logger.info(f"---------------------Epoch {epoch} done-----------------") logger.info(f"Train loss: {jax.device_get(jnp.array(train_loss_metrics)).mean().item()} Train accuracy: {jax.device_get(jnp.array(train_acc_metrics)).mean().item()}") logger.info(f"Eval loss: {jax.device_get(jnp.array(eval_loss_metrics)).mean().item()} Eval accuracy: {jax.device_get(jnp.array(eval_acc_metrics)).mean().item()}") if jax.process_index() == 0: params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) model.save_pretrained( '../', params=params, push_to_hub=True, commit_message=f"Saving weights of epoch {epoch} at step {idx}",) summary_writer.flush()