dminhvu02 commited on
Commit
18b72d5
·
verified ·
1 Parent(s): f577f7c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.4.0
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "/model_zoo/Vivid-7B-base",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 64,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 32,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "k_proj",
19
+ "up_proj",
20
+ "q_proj",
21
+ "down_proj",
22
+ "v_proj",
23
+ "o_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b41c5203e7bea743d0843d653bf92094ae79363e8113b05a4cae5ff1bd97825
3
+ size 167927754
checkpoint-300/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+ - PEFT 0.4.0
9
+
10
+ - PEFT 0.4.0
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "/model_zoo/Vivid-7B-base",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 64,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 32,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "k_proj",
19
+ "up_proj",
20
+ "q_proj",
21
+ "down_proj",
22
+ "v_proj",
23
+ "o_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
checkpoint-300/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5248907b972eb9eef54d8796e7a990b4dcd83dc26fecbc9b8c6777b0ea1217b
3
+ size 167927754
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297260dc0688480fdc1b1d063f8b141060ef419e224266481e67de2679298da1
3
+ size 167832688
checkpoint-300/config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/model_zoo/Vivid-7B-base",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bert_type": "raw_bert_layer:12",
8
+ "bos_token_id": 1,
9
+ "compress_type": "mean",
10
+ "eos_token_id": 2,
11
+ "freeze_mm_mlp_adapter": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_grid_pinpoints": null,
16
+ "image_processor": "./llamavid/processor/clip-patch14-224",
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 32768,
20
+ "max_token": 4096,
21
+ "mm_hidden_size": 1024,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_use_im_patch_token": false,
24
+ "mm_use_im_start_end": false,
25
+ "mm_vision_select_feature": "patch",
26
+ "mm_vision_select_layer": -2,
27
+ "mm_vision_tower": "/model_zoo/openai-clip-vit-large-patch14",
28
+ "model_type": "mistral",
29
+ "num_attention_heads": 32,
30
+ "num_hidden_layers": 32,
31
+ "num_key_value_heads": 8,
32
+ "num_query": 32,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_theta": 10000.0,
35
+ "sliding_window": 4096,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.38.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "use_cache": false,
41
+ "use_mm_proj": true,
42
+ "vocab_size": 48384
43
+ }
checkpoint-300/global_step300/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9ba647e6820f714b07c06bf931419392ebe5ed2759842c9fd2429ded903d501
3
+ size 6931872192
checkpoint-300/global_step300/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91249b58f5d288388c50bd94eedae7ce7b5e7db4a9a6ac18c01c9415b7afd83f
3
+ size 1155894712
checkpoint-300/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step300
checkpoint-300/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0e64ac33c32c2e6383611d3255e401592cb253e4eefe21a1ceaea1719f38730
3
+ size 987789762
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62014b118bf0a56fb8931c6dcf66e897e597ebae4ca3836ba21f1c863467944e
3
+ size 14244
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54d8aec74ed1547670dc36c993b163ed9fe64c06c324dc0dbd57d2ec2238dceb
3
+ size 1064
checkpoint-300/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-300/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d88bdadaa2a065aa7c6e18a4b5999ce4c76cec14d9fea882102e7b4931d7ef0
3
+ size 779539
checkpoint-300/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '</s>'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 4096,
38
+ "pad_token": "<unk>",
39
+ "padding_side": "right",
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,2121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9236097748701174,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 3.3905354112155957,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.5601,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 3.2069311238141744,
21
+ "learning_rate": 2e-05,
22
+ "loss": 1.5425,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 2.329876685543184,
28
+ "learning_rate": 3e-05,
29
+ "loss": 1.5518,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 1.3279617694098214,
35
+ "learning_rate": 4e-05,
36
+ "loss": 1.4658,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.02,
41
+ "grad_norm": 1.3546782512787179,
42
+ "learning_rate": 5e-05,
43
+ "loss": 1.4736,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.02,
48
+ "grad_norm": 1.6365619709572907,
49
+ "learning_rate": 6e-05,
50
+ "loss": 1.4756,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "grad_norm": 1.2081088328094727,
56
+ "learning_rate": 7e-05,
57
+ "loss": 1.3752,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.02,
62
+ "grad_norm": 1.0574546767027917,
63
+ "learning_rate": 8e-05,
64
+ "loss": 1.439,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.03,
69
+ "grad_norm": 1.0012858470947548,
70
+ "learning_rate": 9e-05,
71
+ "loss": 1.4502,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.03,
76
+ "grad_norm": 1.0136463608511321,
77
+ "learning_rate": 0.0001,
78
+ "loss": 1.396,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.03,
83
+ "grad_norm": 0.9854986957079499,
84
+ "learning_rate": 9.999749748415981e-05,
85
+ "loss": 1.4634,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.04,
90
+ "grad_norm": 0.9239702875144448,
91
+ "learning_rate": 9.998999018714263e-05,
92
+ "loss": 1.4185,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "grad_norm": 0.9233186885946617,
98
+ "learning_rate": 9.997747886043367e-05,
99
+ "loss": 1.3691,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.04,
104
+ "grad_norm": 0.8728080646228755,
105
+ "learning_rate": 9.995996475642466e-05,
106
+ "loss": 1.3569,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.05,
111
+ "grad_norm": 0.8307436189120798,
112
+ "learning_rate": 9.99374496282885e-05,
113
+ "loss": 1.3667,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.05,
118
+ "grad_norm": 0.7939681765489442,
119
+ "learning_rate": 9.990993572980378e-05,
120
+ "loss": 1.3589,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.05,
125
+ "grad_norm": 0.7980526587202514,
126
+ "learning_rate": 9.987742581512918e-05,
127
+ "loss": 1.395,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.06,
132
+ "grad_norm": 0.7207026961586376,
133
+ "learning_rate": 9.983992313852774e-05,
134
+ "loss": 1.3887,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.06,
139
+ "grad_norm": 0.7871310923443939,
140
+ "learning_rate": 9.979743145404119e-05,
141
+ "loss": 1.3062,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.06,
146
+ "grad_norm": 0.7246807835643384,
147
+ "learning_rate": 9.974995501511404e-05,
148
+ "loss": 1.4028,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.06,
153
+ "grad_norm": 0.7206361737972257,
154
+ "learning_rate": 9.969749857416789e-05,
155
+ "loss": 1.3398,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.07,
160
+ "grad_norm": 0.6960105391155793,
161
+ "learning_rate": 9.964006738212575e-05,
162
+ "loss": 1.3469,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.07,
167
+ "grad_norm": 0.7204455050781057,
168
+ "learning_rate": 9.957766718788633e-05,
169
+ "loss": 1.3765,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.07,
174
+ "grad_norm": 0.5812596677574942,
175
+ "learning_rate": 9.951030423774859e-05,
176
+ "loss": 1.3379,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "grad_norm": 0.675904894861765,
182
+ "learning_rate": 9.943798527478651e-05,
183
+ "loss": 1.3789,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.08,
188
+ "grad_norm": 0.6664199931252878,
189
+ "learning_rate": 9.936071753817415e-05,
190
+ "loss": 1.3535,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.08,
195
+ "grad_norm": 0.7030363325377104,
196
+ "learning_rate": 9.927850876246088e-05,
197
+ "loss": 1.218,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.09,
202
+ "grad_norm": 0.6185910243439269,
203
+ "learning_rate": 9.919136717679722e-05,
204
+ "loss": 1.3501,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.09,
209
+ "grad_norm": 0.6270496500828271,
210
+ "learning_rate": 9.909930150411113e-05,
211
+ "loss": 1.3628,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.09,
216
+ "grad_norm": 0.6021577621428597,
217
+ "learning_rate": 9.900232096023477e-05,
218
+ "loss": 1.3428,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.1,
223
+ "grad_norm": 0.6760900210464318,
224
+ "learning_rate": 9.890043525298203e-05,
225
+ "loss": 1.3079,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1,
230
+ "grad_norm": 0.5940959503401227,
231
+ "learning_rate": 9.879365458117678e-05,
232
+ "loss": 1.291,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1,
237
+ "grad_norm": 0.5427094594745479,
238
+ "learning_rate": 9.868198963363189e-05,
239
+ "loss": 1.2893,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1,
244
+ "grad_norm": 0.5958301777472343,
245
+ "learning_rate": 9.856545158807938e-05,
246
+ "loss": 1.2363,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.11,
251
+ "grad_norm": 0.5850214722817281,
252
+ "learning_rate": 9.844405211005146e-05,
253
+ "loss": 1.3154,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.11,
258
+ "grad_norm": 0.6172288827652985,
259
+ "learning_rate": 9.831780335171279e-05,
260
+ "loss": 1.3101,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.11,
265
+ "grad_norm": 0.5728085013088785,
266
+ "learning_rate": 9.818671795064404e-05,
267
+ "loss": 1.2817,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.12,
272
+ "grad_norm": 0.5979780148525169,
273
+ "learning_rate": 9.805080902857699e-05,
274
+ "loss": 1.2493,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.12,
279
+ "grad_norm": 0.537951216091522,
280
+ "learning_rate": 9.791009019008078e-05,
281
+ "loss": 1.2454,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.12,
286
+ "grad_norm": 0.5879388223555754,
287
+ "learning_rate": 9.776457552120033e-05,
288
+ "loss": 1.2744,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.13,
293
+ "grad_norm": 0.5828144715679795,
294
+ "learning_rate": 9.761427958804621e-05,
295
+ "loss": 1.2354,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.13,
300
+ "grad_norm": 0.5640545987289305,
301
+ "learning_rate": 9.745921743533653e-05,
302
+ "loss": 1.3105,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.13,
307
+ "grad_norm": 0.6077402891626962,
308
+ "learning_rate": 9.729940458489104e-05,
309
+ "loss": 1.3188,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.14,
314
+ "grad_norm": 0.5649165442230879,
315
+ "learning_rate": 9.713485703407731e-05,
316
+ "loss": 1.2756,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.14,
321
+ "grad_norm": 0.5751090024359722,
322
+ "learning_rate": 9.696559125420948e-05,
323
+ "loss": 1.2336,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.14,
328
+ "grad_norm": 0.5415492855376868,
329
+ "learning_rate": 9.679162418889931e-05,
330
+ "loss": 1.2424,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.14,
335
+ "grad_norm": 0.5742691889803935,
336
+ "learning_rate": 9.66129732523603e-05,
337
+ "loss": 1.2363,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.15,
342
+ "grad_norm": 0.5763001671560306,
343
+ "learning_rate": 9.642965632766436e-05,
344
+ "loss": 1.2661,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.15,
349
+ "grad_norm": 0.5940077836695673,
350
+ "learning_rate": 9.624169176495184e-05,
351
+ "loss": 1.2734,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.15,
356
+ "grad_norm": 0.6005566973905004,
357
+ "learning_rate": 9.604909837959455e-05,
358
+ "loss": 1.2078,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.16,
363
+ "grad_norm": 0.5429670344508561,
364
+ "learning_rate": 9.585189545031238e-05,
365
+ "loss": 1.2246,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.16,
370
+ "grad_norm": 0.5871060174846529,
371
+ "learning_rate": 9.565010271724352e-05,
372
+ "loss": 1.3501,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.16,
377
+ "grad_norm": 0.5907025473048154,
378
+ "learning_rate": 9.54437403799684e-05,
379
+ "loss": 1.2729,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.17,
384
+ "grad_norm": 0.6516780485358238,
385
+ "learning_rate": 9.523282909548773e-05,
386
+ "loss": 1.2881,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.17,
391
+ "grad_norm": 0.5670548168352986,
392
+ "learning_rate": 9.50173899761547e-05,
393
+ "loss": 1.2056,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.17,
398
+ "grad_norm": 0.5390303783246289,
399
+ "learning_rate": 9.47974445875617e-05,
400
+ "loss": 1.2144,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.18,
405
+ "grad_norm": 0.5646076772019145,
406
+ "learning_rate": 9.457301494638147e-05,
407
+ "loss": 1.2212,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.18,
412
+ "grad_norm": 0.5612167041328082,
413
+ "learning_rate": 9.434412351816328e-05,
414
+ "loss": 1.2717,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.18,
419
+ "grad_norm": 0.5263144027788276,
420
+ "learning_rate": 9.411079321508414e-05,
421
+ "loss": 1.2112,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.18,
426
+ "grad_norm": 0.5356079649939604,
427
+ "learning_rate": 9.387304739365523e-05,
428
+ "loss": 1.2234,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.19,
433
+ "grad_norm": 0.5615087563747105,
434
+ "learning_rate": 9.36309098523839e-05,
435
+ "loss": 1.2996,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.19,
440
+ "grad_norm": 0.5314023973665841,
441
+ "learning_rate": 9.338440482939146e-05,
442
+ "loss": 1.1797,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.19,
447
+ "grad_norm": 0.5539257915730327,
448
+ "learning_rate": 9.31335569999869e-05,
449
+ "loss": 1.2395,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2,
454
+ "grad_norm": 0.5648098416860655,
455
+ "learning_rate": 9.287839147419686e-05,
456
+ "loss": 1.2156,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.2,
461
+ "grad_norm": 0.5865707594533118,
462
+ "learning_rate": 9.261893379425218e-05,
463
+ "loss": 1.2683,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2,
468
+ "grad_norm": 0.5440049015077518,
469
+ "learning_rate": 9.2355209932031e-05,
470
+ "loss": 1.1853,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.21,
475
+ "grad_norm": 0.5440912007358205,
476
+ "learning_rate": 9.208724628645902e-05,
477
+ "loss": 1.207,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.21,
482
+ "grad_norm": 0.5587040510710671,
483
+ "learning_rate": 9.181506968086697e-05,
484
+ "loss": 1.1768,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.21,
489
+ "grad_norm": 0.5192024047252568,
490
+ "learning_rate": 9.153870736030548e-05,
491
+ "loss": 1.2427,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.22,
496
+ "grad_norm": 0.528230045301502,
497
+ "learning_rate": 9.125818698881798e-05,
498
+ "loss": 1.2168,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.22,
503
+ "grad_norm": 0.5562754356167662,
504
+ "learning_rate": 9.097353664667138e-05,
505
+ "loss": 1.2793,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.22,
510
+ "grad_norm": 0.5415713371356312,
511
+ "learning_rate": 9.068478482754532e-05,
512
+ "loss": 1.2334,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.22,
517
+ "grad_norm": 0.5683526535348254,
518
+ "learning_rate": 9.03919604356798e-05,
519
+ "loss": 1.2534,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.23,
524
+ "grad_norm": 0.5396091696393609,
525
+ "learning_rate": 9.0095092782982e-05,
526
+ "loss": 1.2722,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.23,
531
+ "grad_norm": 0.513589724983156,
532
+ "learning_rate": 8.979421158609206e-05,
533
+ "loss": 1.2083,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.23,
538
+ "grad_norm": 0.5376666654796496,
539
+ "learning_rate": 8.948934696340843e-05,
540
+ "loss": 1.1931,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.24,
545
+ "grad_norm": 0.5368664737517322,
546
+ "learning_rate": 8.918052943207298e-05,
547
+ "loss": 1.2202,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.24,
552
+ "grad_norm": 0.5263413266320822,
553
+ "learning_rate": 8.886778990491631e-05,
554
+ "loss": 1.1553,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.24,
559
+ "grad_norm": 0.5604541523029579,
560
+ "learning_rate": 8.85511596873632e-05,
561
+ "loss": 1.2964,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.25,
566
+ "grad_norm": 0.5427504321680312,
567
+ "learning_rate": 8.823067047429907e-05,
568
+ "loss": 1.2896,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.25,
573
+ "grad_norm": 0.5474275345159585,
574
+ "learning_rate": 8.790635434689721e-05,
575
+ "loss": 1.2612,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.25,
580
+ "grad_norm": 0.5269654905955425,
581
+ "learning_rate": 8.757824376940746e-05,
582
+ "loss": 1.1821,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.26,
587
+ "grad_norm": 0.518380839571753,
588
+ "learning_rate": 8.724637158590652e-05,
589
+ "loss": 1.2393,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.26,
594
+ "grad_norm": 0.5158889921158187,
595
+ "learning_rate": 8.691077101701024e-05,
596
+ "loss": 1.2754,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.26,
601
+ "grad_norm": 0.4935757204910804,
602
+ "learning_rate": 8.65714756565482e-05,
603
+ "loss": 1.2173,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.26,
608
+ "grad_norm": 0.5653934280740491,
609
+ "learning_rate": 8.622851946820095e-05,
610
+ "loss": 1.2253,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.27,
615
+ "grad_norm": 0.5250362872573285,
616
+ "learning_rate": 8.588193678210026e-05,
617
+ "loss": 1.1707,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.27,
622
+ "grad_norm": 0.5446362423647451,
623
+ "learning_rate": 8.553176229139261e-05,
624
+ "loss": 1.1589,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.27,
629
+ "grad_norm": 0.5142920460404157,
630
+ "learning_rate": 8.517803104876639e-05,
631
+ "loss": 1.1948,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.28,
636
+ "grad_norm": 0.5317755291367837,
637
+ "learning_rate": 8.482077846294308e-05,
638
+ "loss": 1.1812,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.28,
643
+ "grad_norm": 0.5147982642702206,
644
+ "learning_rate": 8.446004029513294e-05,
645
+ "loss": 1.2266,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.28,
650
+ "grad_norm": 0.5096116915413985,
651
+ "learning_rate": 8.409585265545509e-05,
652
+ "loss": 1.179,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.29,
657
+ "grad_norm": 0.49910238964612424,
658
+ "learning_rate": 8.372825199932304e-05,
659
+ "loss": 1.2485,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.29,
664
+ "grad_norm": 0.5507929652198581,
665
+ "learning_rate": 8.335727512379534e-05,
666
+ "loss": 1.2388,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.29,
671
+ "grad_norm": 0.5063227228339493,
672
+ "learning_rate": 8.298295916389234e-05,
673
+ "loss": 1.2415,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3,
678
+ "grad_norm": 0.48774944558422,
679
+ "learning_rate": 8.260534158887876e-05,
680
+ "loss": 1.1301,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.3,
685
+ "grad_norm": 0.5131731261481731,
686
+ "learning_rate": 8.222446019851314e-05,
687
+ "loss": 1.2158,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3,
692
+ "grad_norm": 0.49068550228239954,
693
+ "learning_rate": 8.184035311926396e-05,
694
+ "loss": 1.1968,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3,
699
+ "grad_norm": 0.5288695654598018,
700
+ "learning_rate": 8.145305880049328e-05,
701
+ "loss": 1.2637,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.31,
706
+ "grad_norm": 0.5479388159051014,
707
+ "learning_rate": 8.106261601060772e-05,
708
+ "loss": 1.3218,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.31,
713
+ "grad_norm": 0.5621161336370604,
714
+ "learning_rate": 8.066906383317801e-05,
715
+ "loss": 1.1729,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.31,
720
+ "grad_norm": 0.4924846556483893,
721
+ "learning_rate": 8.027244166302642e-05,
722
+ "loss": 1.1875,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.32,
727
+ "grad_norm": 0.5037791405351364,
728
+ "learning_rate": 7.987278920228349e-05,
729
+ "loss": 1.2539,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.32,
734
+ "grad_norm": 0.522728960991421,
735
+ "learning_rate": 7.947014645641379e-05,
736
+ "loss": 1.2217,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.32,
741
+ "grad_norm": 0.5182027559256257,
742
+ "learning_rate": 7.906455373021129e-05,
743
+ "loss": 1.2188,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.33,
748
+ "grad_norm": 0.5539472403444413,
749
+ "learning_rate": 7.865605162376486e-05,
750
+ "loss": 1.1509,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.33,
755
+ "grad_norm": 0.5439005321857965,
756
+ "learning_rate": 7.824468102839419e-05,
757
+ "loss": 1.251,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.33,
762
+ "grad_norm": 0.5093593984665626,
763
+ "learning_rate": 7.783048312255653e-05,
764
+ "loss": 1.229,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.34,
769
+ "grad_norm": 0.5145253165856254,
770
+ "learning_rate": 7.741349936772469e-05,
771
+ "loss": 1.1824,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.34,
776
+ "grad_norm": 0.5702243863746732,
777
+ "learning_rate": 7.699377150423672e-05,
778
+ "loss": 1.1582,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.34,
783
+ "grad_norm": 0.5451183103162889,
784
+ "learning_rate": 7.65713415471177e-05,
785
+ "loss": 1.2122,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.34,
790
+ "grad_norm": 0.5252426501201418,
791
+ "learning_rate": 7.614625178187402e-05,
792
+ "loss": 1.1833,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.35,
797
+ "grad_norm": 0.48749296422821287,
798
+ "learning_rate": 7.571854476026048e-05,
799
+ "loss": 1.2705,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.35,
804
+ "grad_norm": 0.502002191255964,
805
+ "learning_rate": 7.528826329602099e-05,
806
+ "loss": 1.2188,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.35,
811
+ "grad_norm": 0.48918503246260797,
812
+ "learning_rate": 7.485545046060271e-05,
813
+ "loss": 1.1997,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.36,
818
+ "grad_norm": 0.5000600132443745,
819
+ "learning_rate": 7.442014957884472e-05,
820
+ "loss": 1.2051,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.36,
825
+ "grad_norm": 0.5463372631998543,
826
+ "learning_rate": 7.398240422464109e-05,
827
+ "loss": 1.2214,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.36,
832
+ "grad_norm": 0.4961344121724833,
833
+ "learning_rate": 7.354225821657914e-05,
834
+ "loss": 1.208,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.37,
839
+ "grad_norm": 0.5899278757904003,
840
+ "learning_rate": 7.309975561355312e-05,
841
+ "loss": 1.146,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.37,
846
+ "grad_norm": 0.5023010444635025,
847
+ "learning_rate": 7.265494071035401e-05,
848
+ "loss": 1.1509,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.37,
853
+ "grad_norm": 0.5098342526132932,
854
+ "learning_rate": 7.220785803323544e-05,
855
+ "loss": 1.1743,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.38,
860
+ "grad_norm": 0.5181510224338065,
861
+ "learning_rate": 7.175855233545668e-05,
862
+ "loss": 1.1807,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.38,
867
+ "grad_norm": 0.5126009147492929,
868
+ "learning_rate": 7.130706859280274e-05,
869
+ "loss": 1.1875,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.38,
874
+ "grad_norm": 0.5694155609516423,
875
+ "learning_rate": 7.085345199908235e-05,
876
+ "loss": 1.1428,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.38,
881
+ "grad_norm": 0.5320176914945207,
882
+ "learning_rate": 7.03977479616039e-05,
883
+ "loss": 1.219,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.39,
888
+ "grad_norm": 0.5263190337396886,
889
+ "learning_rate": 6.994000209663036e-05,
890
+ "loss": 1.1709,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.39,
895
+ "grad_norm": 0.5043242059465939,
896
+ "learning_rate": 6.948026022481279e-05,
897
+ "loss": 1.1968,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.39,
902
+ "grad_norm": 0.5580562389957314,
903
+ "learning_rate": 6.901856836660386e-05,
904
+ "loss": 1.1494,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4,
909
+ "grad_norm": 0.495782343949626,
910
+ "learning_rate": 6.855497273765112e-05,
911
+ "loss": 1.2119,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.4,
916
+ "grad_norm": 0.49510379613102157,
917
+ "learning_rate": 6.808951974417078e-05,
918
+ "loss": 1.2063,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4,
923
+ "grad_norm": 0.5536322418977505,
924
+ "learning_rate": 6.762225597830237e-05,
925
+ "loss": 1.2617,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.41,
930
+ "grad_norm": 0.5668665640341709,
931
+ "learning_rate": 6.715322821344494e-05,
932
+ "loss": 1.1443,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.41,
937
+ "grad_norm": 0.5083973254687169,
938
+ "learning_rate": 6.668248339957491e-05,
939
+ "loss": 1.2588,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.41,
944
+ "grad_norm": 0.5188609075674584,
945
+ "learning_rate": 6.621006865854644e-05,
946
+ "loss": 1.1726,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.42,
951
+ "grad_norm": 0.5083154005353754,
952
+ "learning_rate": 6.573603127937442e-05,
953
+ "loss": 1.1953,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.42,
958
+ "grad_norm": 0.544802137981313,
959
+ "learning_rate": 6.526041871350086e-05,
960
+ "loss": 1.1853,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.42,
965
+ "grad_norm": 0.4692918589408204,
966
+ "learning_rate": 6.478327857004495e-05,
967
+ "loss": 1.1267,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.42,
972
+ "grad_norm": 0.504019443454899,
973
+ "learning_rate": 6.43046586110374e-05,
974
+ "loss": 1.2085,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.43,
979
+ "grad_norm": 0.5071221863228176,
980
+ "learning_rate": 6.382460674663932e-05,
981
+ "loss": 1.2026,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.43,
986
+ "grad_norm": 0.5146798822767533,
987
+ "learning_rate": 6.334317103034652e-05,
988
+ "loss": 1.1177,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.43,
993
+ "grad_norm": 0.4996775842843673,
994
+ "learning_rate": 6.286039965417925e-05,
995
+ "loss": 1.1711,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.44,
1000
+ "grad_norm": 0.5288823443570614,
1001
+ "learning_rate": 6.237634094385813e-05,
1002
+ "loss": 1.1199,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.44,
1007
+ "grad_norm": 0.5214584824734313,
1008
+ "learning_rate": 6.18910433539668e-05,
1009
+ "loss": 1.1199,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.44,
1014
+ "grad_norm": 0.5287174552858058,
1015
+ "learning_rate": 6.140455546310148e-05,
1016
+ "loss": 1.2134,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.45,
1021
+ "grad_norm": 0.5254574455344191,
1022
+ "learning_rate": 6.0916925969008275e-05,
1023
+ "loss": 1.2578,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.45,
1028
+ "grad_norm": 0.5189177716169284,
1029
+ "learning_rate": 6.042820368370854e-05,
1030
+ "loss": 1.2236,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.45,
1035
+ "grad_norm": 0.5680190447979175,
1036
+ "learning_rate": 5.993843752861266e-05,
1037
+ "loss": 1.1443,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.46,
1042
+ "grad_norm": 0.471841513545942,
1043
+ "learning_rate": 5.944767652962309e-05,
1044
+ "loss": 1.1733,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.46,
1049
+ "grad_norm": 0.5131643851734395,
1050
+ "learning_rate": 5.895596981222678e-05,
1051
+ "loss": 1.1592,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.46,
1056
+ "grad_norm": 0.5069414300839418,
1057
+ "learning_rate": 5.8463366596577706e-05,
1058
+ "loss": 1.2537,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.46,
1063
+ "grad_norm": 0.5239372199223642,
1064
+ "learning_rate": 5.796991619256985e-05,
1065
+ "loss": 1.1743,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.47,
1070
+ "grad_norm": 0.5387326952860074,
1071
+ "learning_rate": 5.747566799490132e-05,
1072
+ "loss": 1.2075,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.47,
1077
+ "grad_norm": 0.5224076525892895,
1078
+ "learning_rate": 5.6980671478129853e-05,
1079
+ "loss": 1.2515,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.47,
1084
+ "grad_norm": 0.5609147216869792,
1085
+ "learning_rate": 5.648497619172042e-05,
1086
+ "loss": 1.1836,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.48,
1091
+ "grad_norm": 0.5465488763290158,
1092
+ "learning_rate": 5.5988631755085264e-05,
1093
+ "loss": 1.1433,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.48,
1098
+ "grad_norm": 0.5079660248232113,
1099
+ "learning_rate": 5.549168785261698e-05,
1100
+ "loss": 1.1812,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.48,
1105
+ "grad_norm": 0.5717154092705009,
1106
+ "learning_rate": 5.499419422871506e-05,
1107
+ "loss": 1.2068,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.49,
1112
+ "grad_norm": 0.5301493442832448,
1113
+ "learning_rate": 5.4496200682806495e-05,
1114
+ "loss": 1.2273,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.49,
1119
+ "grad_norm": 0.5098890110687092,
1120
+ "learning_rate": 5.399775706436076e-05,
1121
+ "loss": 1.2134,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.49,
1126
+ "grad_norm": 0.5365690403371399,
1127
+ "learning_rate": 5.3498913267899864e-05,
1128
+ "loss": 1.2051,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5,
1133
+ "grad_norm": 0.5002287628666306,
1134
+ "learning_rate": 5.299971922800391e-05,
1135
+ "loss": 1.1255,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5,
1140
+ "grad_norm": 0.5276270904967929,
1141
+ "learning_rate": 5.250022491431259e-05,
1142
+ "loss": 1.2124,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5,
1147
+ "grad_norm": 0.5224515486361312,
1148
+ "learning_rate": 5.200048032652318e-05,
1149
+ "loss": 1.2559,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5,
1154
+ "grad_norm": 0.49316666866194575,
1155
+ "learning_rate": 5.150053548938557e-05,
1156
+ "loss": 1.1421,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.51,
1161
+ "grad_norm": 0.5388196993705506,
1162
+ "learning_rate": 5.100044044769472e-05,
1163
+ "loss": 1.2017,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.51,
1168
+ "grad_norm": 0.4944161877205336,
1169
+ "learning_rate": 5.0500245261281175e-05,
1170
+ "loss": 1.1838,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.51,
1175
+ "grad_norm": 0.5075949586376647,
1176
+ "learning_rate": 5e-05,
1177
+ "loss": 1.2698,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.52,
1182
+ "grad_norm": 0.5288349964384436,
1183
+ "learning_rate": 4.949975473871884e-05,
1184
+ "loss": 1.2051,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.52,
1189
+ "grad_norm": 0.5298564213314307,
1190
+ "learning_rate": 4.899955955230529e-05,
1191
+ "loss": 1.1921,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.52,
1196
+ "grad_norm": 0.5006832164442894,
1197
+ "learning_rate": 4.849946451061443e-05,
1198
+ "loss": 1.0999,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.53,
1203
+ "grad_norm": 0.5180365116427443,
1204
+ "learning_rate": 4.799951967347683e-05,
1205
+ "loss": 1.1248,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.53,
1210
+ "grad_norm": 0.5085456414296031,
1211
+ "learning_rate": 4.749977508568742e-05,
1212
+ "loss": 1.0989,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.53,
1217
+ "grad_norm": 0.5062569741436713,
1218
+ "learning_rate": 4.7000280771996104e-05,
1219
+ "loss": 1.1851,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.54,
1224
+ "grad_norm": 0.49915526983252295,
1225
+ "learning_rate": 4.650108673210015e-05,
1226
+ "loss": 1.1565,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.54,
1231
+ "grad_norm": 0.530737295373366,
1232
+ "learning_rate": 4.6002242935639254e-05,
1233
+ "loss": 1.1367,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.54,
1238
+ "grad_norm": 0.5354173274123866,
1239
+ "learning_rate": 4.550379931719351e-05,
1240
+ "loss": 1.2231,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.54,
1245
+ "grad_norm": 0.4910072525351625,
1246
+ "learning_rate": 4.500580577128495e-05,
1247
+ "loss": 1.2354,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.55,
1252
+ "grad_norm": 0.5227332856552718,
1253
+ "learning_rate": 4.4508312147383036e-05,
1254
+ "loss": 1.2178,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.55,
1259
+ "grad_norm": 0.5288368214749951,
1260
+ "learning_rate": 4.4011368244914755e-05,
1261
+ "loss": 1.1731,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.55,
1266
+ "grad_norm": 0.5044952842565356,
1267
+ "learning_rate": 4.3515023808279586e-05,
1268
+ "loss": 1.1287,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.56,
1273
+ "grad_norm": 0.5325342803705855,
1274
+ "learning_rate": 4.301932852187016e-05,
1275
+ "loss": 1.2129,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.56,
1280
+ "grad_norm": 0.5415040662560654,
1281
+ "learning_rate": 4.252433200509869e-05,
1282
+ "loss": 1.3086,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.56,
1287
+ "grad_norm": 0.51763854212227,
1288
+ "learning_rate": 4.203008380743016e-05,
1289
+ "loss": 1.1216,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.57,
1294
+ "grad_norm": 0.5422430582487087,
1295
+ "learning_rate": 4.1536633403422306e-05,
1296
+ "loss": 1.1111,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.57,
1301
+ "grad_norm": 0.5022269460427503,
1302
+ "learning_rate": 4.104403018777323e-05,
1303
+ "loss": 1.1963,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.57,
1308
+ "grad_norm": 0.5631689643987351,
1309
+ "learning_rate": 4.0552323470376916e-05,
1310
+ "loss": 1.261,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.58,
1315
+ "grad_norm": 0.5083595167881586,
1316
+ "learning_rate": 4.006156247138736e-05,
1317
+ "loss": 1.2529,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.58,
1322
+ "grad_norm": 0.4982995201328196,
1323
+ "learning_rate": 3.9571796316291476e-05,
1324
+ "loss": 1.1938,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.58,
1329
+ "grad_norm": 0.5142407248745989,
1330
+ "learning_rate": 3.908307403099174e-05,
1331
+ "loss": 1.231,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.58,
1336
+ "grad_norm": 0.49845909814685674,
1337
+ "learning_rate": 3.859544453689853e-05,
1338
+ "loss": 1.1174,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.59,
1343
+ "grad_norm": 0.5044393346608876,
1344
+ "learning_rate": 3.810895664603321e-05,
1345
+ "loss": 1.1626,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.59,
1350
+ "grad_norm": 0.5028906716759755,
1351
+ "learning_rate": 3.762365905614187e-05,
1352
+ "loss": 1.1248,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.59,
1357
+ "grad_norm": 0.5052094751619233,
1358
+ "learning_rate": 3.713960034582077e-05,
1359
+ "loss": 1.1782,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.6,
1364
+ "grad_norm": 0.4927933528160678,
1365
+ "learning_rate": 3.665682896965349e-05,
1366
+ "loss": 1.1411,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.6,
1371
+ "grad_norm": 0.5194837061389329,
1372
+ "learning_rate": 3.61753932533607e-05,
1373
+ "loss": 1.1194,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.6,
1378
+ "grad_norm": 0.5003507430931593,
1379
+ "learning_rate": 3.5695341388962614e-05,
1380
+ "loss": 1.1438,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.61,
1385
+ "grad_norm": 0.4952909851844929,
1386
+ "learning_rate": 3.521672142995506e-05,
1387
+ "loss": 1.1274,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.61,
1392
+ "grad_norm": 0.515058338420701,
1393
+ "learning_rate": 3.473958128649915e-05,
1394
+ "loss": 1.2173,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.61,
1399
+ "grad_norm": 0.4649441022469789,
1400
+ "learning_rate": 3.4263968720625594e-05,
1401
+ "loss": 1.0901,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.62,
1406
+ "grad_norm": 0.5257495392411118,
1407
+ "learning_rate": 3.378993134145356e-05,
1408
+ "loss": 1.2124,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.62,
1413
+ "grad_norm": 0.4932641665110047,
1414
+ "learning_rate": 3.33175166004251e-05,
1415
+ "loss": 1.2024,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.62,
1420
+ "grad_norm": 0.47986279797474973,
1421
+ "learning_rate": 3.284677178655507e-05,
1422
+ "loss": 1.199,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.62,
1427
+ "grad_norm": 0.5192526802216362,
1428
+ "learning_rate": 3.2377744021697644e-05,
1429
+ "loss": 1.1348,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.63,
1434
+ "grad_norm": 0.49075397683891514,
1435
+ "learning_rate": 3.1910480255829237e-05,
1436
+ "loss": 1.209,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.63,
1441
+ "grad_norm": 0.5308583566356849,
1442
+ "learning_rate": 3.1445027262348894e-05,
1443
+ "loss": 1.1843,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.63,
1448
+ "grad_norm": 0.4754800140640908,
1449
+ "learning_rate": 3.098143163339615e-05,
1450
+ "loss": 1.0713,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.64,
1455
+ "grad_norm": 0.48744339587851926,
1456
+ "learning_rate": 3.051973977518723e-05,
1457
+ "loss": 1.1589,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.64,
1462
+ "grad_norm": 0.538169296667757,
1463
+ "learning_rate": 3.0059997903369656e-05,
1464
+ "loss": 1.1636,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.64,
1469
+ "grad_norm": 0.5174008006678488,
1470
+ "learning_rate": 2.9602252038396093e-05,
1471
+ "loss": 1.0088,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.65,
1476
+ "grad_norm": 0.5423637270068683,
1477
+ "learning_rate": 2.914654800091768e-05,
1478
+ "loss": 1.2637,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.65,
1483
+ "grad_norm": 0.49532340168296196,
1484
+ "learning_rate": 2.8692931407197275e-05,
1485
+ "loss": 1.1211,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.65,
1490
+ "grad_norm": 0.5223772948936137,
1491
+ "learning_rate": 2.824144766454333e-05,
1492
+ "loss": 1.1392,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.66,
1497
+ "grad_norm": 0.5301272448221841,
1498
+ "learning_rate": 2.7792141966764568e-05,
1499
+ "loss": 1.1663,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.66,
1504
+ "grad_norm": 0.5241453393589025,
1505
+ "learning_rate": 2.7345059289646008e-05,
1506
+ "loss": 1.1375,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.66,
1511
+ "grad_norm": 0.4946190439071369,
1512
+ "learning_rate": 2.6900244386446904e-05,
1513
+ "loss": 1.1843,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.66,
1518
+ "grad_norm": 0.4894503682723616,
1519
+ "learning_rate": 2.6457741783420886e-05,
1520
+ "loss": 1.1492,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.67,
1525
+ "grad_norm": 0.4852212167430057,
1526
+ "learning_rate": 2.6017595775358926e-05,
1527
+ "loss": 1.1592,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.67,
1532
+ "grad_norm": 0.5560815990000127,
1533
+ "learning_rate": 2.5579850421155293e-05,
1534
+ "loss": 1.1484,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.67,
1539
+ "grad_norm": 0.5035735515547093,
1540
+ "learning_rate": 2.514454953939731e-05,
1541
+ "loss": 1.1381,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.68,
1546
+ "grad_norm": 0.5057189594248047,
1547
+ "learning_rate": 2.4711736703979018e-05,
1548
+ "loss": 1.2036,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.68,
1553
+ "grad_norm": 0.5116012961964514,
1554
+ "learning_rate": 2.428145523973952e-05,
1555
+ "loss": 1.2212,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.68,
1560
+ "grad_norm": 0.48593835956939924,
1561
+ "learning_rate": 2.3853748218126e-05,
1562
+ "loss": 1.1505,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.69,
1567
+ "grad_norm": 0.5014137656412536,
1568
+ "learning_rate": 2.342865845288232e-05,
1569
+ "loss": 1.2246,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.69,
1574
+ "grad_norm": 0.5223070185696177,
1575
+ "learning_rate": 2.3006228495763295e-05,
1576
+ "loss": 1.158,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.69,
1581
+ "grad_norm": 0.5624122056478932,
1582
+ "learning_rate": 2.258650063227533e-05,
1583
+ "loss": 1.0566,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.7,
1588
+ "grad_norm": 0.5471967527021497,
1589
+ "learning_rate": 2.2169516877443485e-05,
1590
+ "loss": 1.1277,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.7,
1595
+ "grad_norm": 0.48337168913421796,
1596
+ "learning_rate": 2.1755318971605826e-05,
1597
+ "loss": 1.1956,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.7,
1602
+ "grad_norm": 0.5284626857313452,
1603
+ "learning_rate": 2.1343948376235144e-05,
1604
+ "loss": 1.196,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.71,
1609
+ "grad_norm": 0.5837213719579207,
1610
+ "learning_rate": 2.0935446269788717e-05,
1611
+ "loss": 1.0967,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.71,
1616
+ "grad_norm": 0.5165785735037434,
1617
+ "learning_rate": 2.052985354358622e-05,
1618
+ "loss": 1.2036,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.71,
1623
+ "grad_norm": 0.5536196580249753,
1624
+ "learning_rate": 2.0127210797716524e-05,
1625
+ "loss": 1.1572,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.71,
1630
+ "grad_norm": 0.4991948055619459,
1631
+ "learning_rate": 1.9727558336973595e-05,
1632
+ "loss": 1.2112,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.72,
1637
+ "grad_norm": 0.5271303549814744,
1638
+ "learning_rate": 1.933093616682201e-05,
1639
+ "loss": 1.0928,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.72,
1644
+ "grad_norm": 0.4755907436318383,
1645
+ "learning_rate": 1.8937383989392294e-05,
1646
+ "loss": 1.198,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.72,
1651
+ "grad_norm": 0.5071149662683123,
1652
+ "learning_rate": 1.854694119950675e-05,
1653
+ "loss": 1.1602,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.73,
1658
+ "grad_norm": 0.541369836697391,
1659
+ "learning_rate": 1.8159646880736036e-05,
1660
+ "loss": 1.1282,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.73,
1665
+ "grad_norm": 0.5083789491431415,
1666
+ "learning_rate": 1.7775539801486867e-05,
1667
+ "loss": 1.0872,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.73,
1672
+ "grad_norm": 0.5324743232408313,
1673
+ "learning_rate": 1.739465841112125e-05,
1674
+ "loss": 1.2222,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.74,
1679
+ "grad_norm": 0.48387142611649014,
1680
+ "learning_rate": 1.701704083610768e-05,
1681
+ "loss": 1.158,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.74,
1686
+ "grad_norm": 0.5141063576503123,
1687
+ "learning_rate": 1.664272487620466e-05,
1688
+ "loss": 1.1162,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.74,
1693
+ "grad_norm": 0.5408323267729829,
1694
+ "learning_rate": 1.6271748000676983e-05,
1695
+ "loss": 1.02,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.75,
1700
+ "grad_norm": 0.49627165191053163,
1701
+ "learning_rate": 1.590414734454493e-05,
1702
+ "loss": 1.0848,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.75,
1707
+ "grad_norm": 0.5376377474797022,
1708
+ "learning_rate": 1.5539959704867085e-05,
1709
+ "loss": 1.2019,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.75,
1714
+ "grad_norm": 0.49371506434647033,
1715
+ "learning_rate": 1.517922153705692e-05,
1716
+ "loss": 1.2151,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.75,
1721
+ "grad_norm": 0.523592301439241,
1722
+ "learning_rate": 1.4821968951233638e-05,
1723
+ "loss": 1.231,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.76,
1728
+ "grad_norm": 0.5074105674850246,
1729
+ "learning_rate": 1.4468237708607397e-05,
1730
+ "loss": 1.1519,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.76,
1735
+ "grad_norm": 0.5066768606133761,
1736
+ "learning_rate": 1.4118063217899746e-05,
1737
+ "loss": 1.1492,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.76,
1742
+ "grad_norm": 0.5116682098711993,
1743
+ "learning_rate": 1.3771480531799052e-05,
1744
+ "loss": 1.1477,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.77,
1749
+ "grad_norm": 0.5352752339451914,
1750
+ "learning_rate": 1.342852434345181e-05,
1751
+ "loss": 1.0964,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.77,
1756
+ "grad_norm": 0.5418770700535751,
1757
+ "learning_rate": 1.308922898298977e-05,
1758
+ "loss": 1.0803,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.77,
1763
+ "grad_norm": 0.5157514248366463,
1764
+ "learning_rate": 1.2753628414093489e-05,
1765
+ "loss": 1.1614,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.78,
1770
+ "grad_norm": 0.5351720244073139,
1771
+ "learning_rate": 1.2421756230592534e-05,
1772
+ "loss": 1.2224,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.78,
1777
+ "grad_norm": 0.5214450914678166,
1778
+ "learning_rate": 1.2093645653102786e-05,
1779
+ "loss": 1.2302,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.78,
1784
+ "grad_norm": 0.5409585268429792,
1785
+ "learning_rate": 1.1769329525700935e-05,
1786
+ "loss": 1.2104,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.79,
1791
+ "grad_norm": 0.5220300809084372,
1792
+ "learning_rate": 1.144884031263681e-05,
1793
+ "loss": 1.1047,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.79,
1798
+ "grad_norm": 0.5376568328092315,
1799
+ "learning_rate": 1.1132210095083694e-05,
1800
+ "loss": 1.2002,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.79,
1805
+ "grad_norm": 0.5414025185087213,
1806
+ "learning_rate": 1.081947056792702e-05,
1807
+ "loss": 1.1833,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.79,
1812
+ "grad_norm": 0.49383703911170834,
1813
+ "learning_rate": 1.0510653036591583e-05,
1814
+ "loss": 1.199,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.8,
1819
+ "grad_norm": 0.4916712820340113,
1820
+ "learning_rate": 1.0205788413907952e-05,
1821
+ "loss": 1.1292,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.8,
1826
+ "grad_norm": 0.5168351602558782,
1827
+ "learning_rate": 9.904907217018e-06,
1828
+ "loss": 1.2712,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8,
1833
+ "grad_norm": 0.4856958512300068,
1834
+ "learning_rate": 9.608039564320209e-06,
1835
+ "loss": 1.1277,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.81,
1840
+ "grad_norm": 0.5106017400451819,
1841
+ "learning_rate": 9.31521517245469e-06,
1842
+ "loss": 1.1108,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.81,
1847
+ "grad_norm": 0.5036900746833531,
1848
+ "learning_rate": 9.026463353328613e-06,
1849
+ "loss": 1.1748,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.81,
1854
+ "grad_norm": 0.5033379794982934,
1855
+ "learning_rate": 8.741813011182014e-06,
1856
+ "loss": 1.1521,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.82,
1861
+ "grad_norm": 0.5332335505700774,
1862
+ "learning_rate": 8.461292639694518e-06,
1863
+ "loss": 1.0955,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.82,
1868
+ "grad_norm": 0.5125213937729919,
1869
+ "learning_rate": 8.18493031913305e-06,
1870
+ "loss": 1.1089,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.82,
1875
+ "grad_norm": 0.5148264028992737,
1876
+ "learning_rate": 7.912753713540988e-06,
1877
+ "loss": 1.177,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.83,
1882
+ "grad_norm": 0.5229543225675894,
1883
+ "learning_rate": 7.644790067969005e-06,
1884
+ "loss": 1.1646,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.83,
1889
+ "grad_norm": 0.541964343800654,
1890
+ "learning_rate": 7.381066205747822e-06,
1891
+ "loss": 1.1187,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.83,
1896
+ "grad_norm": 0.5266917236869202,
1897
+ "learning_rate": 7.1216085258031414e-06,
1898
+ "loss": 1.0901,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.83,
1903
+ "grad_norm": 0.49725116144459375,
1904
+ "learning_rate": 6.866443000013117e-06,
1905
+ "loss": 1.1526,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.84,
1910
+ "grad_norm": 0.5012370969649222,
1911
+ "learning_rate": 6.6155951706085405e-06,
1912
+ "loss": 1.1689,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.84,
1917
+ "grad_norm": 0.5129519814796674,
1918
+ "learning_rate": 6.369090147616103e-06,
1919
+ "loss": 1.1348,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.84,
1924
+ "grad_norm": 0.4926628244202811,
1925
+ "learning_rate": 6.1269526063447765e-06,
1926
+ "loss": 1.1538,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.85,
1931
+ "grad_norm": 0.5420926972187566,
1932
+ "learning_rate": 5.889206784915862e-06,
1933
+ "loss": 1.1484,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.85,
1938
+ "grad_norm": 0.4950562048422779,
1939
+ "learning_rate": 5.6558764818367195e-06,
1940
+ "loss": 1.2126,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.85,
1945
+ "grad_norm": 0.536783110803186,
1946
+ "learning_rate": 5.426985053618544e-06,
1947
+ "loss": 1.1301,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.86,
1952
+ "grad_norm": 0.5016583572718184,
1953
+ "learning_rate": 5.2025554124383095e-06,
1954
+ "loss": 1.1582,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.86,
1959
+ "grad_norm": 0.5263293678305013,
1960
+ "learning_rate": 4.9826100238453135e-06,
1961
+ "loss": 1.1577,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.86,
1966
+ "grad_norm": 0.5272007649322749,
1967
+ "learning_rate": 4.767170904512292e-06,
1968
+ "loss": 1.167,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.87,
1973
+ "grad_norm": 0.5063050835599103,
1974
+ "learning_rate": 4.556259620031617e-06,
1975
+ "loss": 1.1846,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.87,
1980
+ "grad_norm": 0.4910298010180289,
1981
+ "learning_rate": 4.349897282756487e-06,
1982
+ "loss": 1.1357,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.87,
1987
+ "grad_norm": 0.5379014923521229,
1988
+ "learning_rate": 4.148104549687626e-06,
1989
+ "loss": 1.0798,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.87,
1994
+ "grad_norm": 0.4865878079832316,
1995
+ "learning_rate": 3.95090162040545e-06,
1996
+ "loss": 1.1123,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.88,
2001
+ "grad_norm": 0.5282174531059731,
2002
+ "learning_rate": 3.758308235048158e-06,
2003
+ "loss": 1.1538,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.88,
2008
+ "grad_norm": 0.5010967709298223,
2009
+ "learning_rate": 3.570343672335641e-06,
2010
+ "loss": 1.1392,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.88,
2015
+ "grad_norm": 0.5189711142846094,
2016
+ "learning_rate": 3.38702674763971e-06,
2017
+ "loss": 1.1851,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.89,
2022
+ "grad_norm": 0.49664252429083205,
2023
+ "learning_rate": 3.2083758111006945e-06,
2024
+ "loss": 1.11,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.89,
2029
+ "grad_norm": 0.4859267407564821,
2030
+ "learning_rate": 3.0344087457905346e-06,
2031
+ "loss": 1.1719,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.89,
2036
+ "grad_norm": 0.5151543902141822,
2037
+ "learning_rate": 2.86514296592269e-06,
2038
+ "loss": 1.2102,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.9,
2043
+ "grad_norm": 0.5256996348656279,
2044
+ "learning_rate": 2.7005954151089695e-06,
2045
+ "loss": 1.1709,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.9,
2050
+ "grad_norm": 0.5102631445476464,
2051
+ "learning_rate": 2.54078256466348e-06,
2052
+ "loss": 1.2034,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.9,
2057
+ "grad_norm": 0.5093343267813872,
2058
+ "learning_rate": 2.3857204119538014e-06,
2059
+ "loss": 1.0969,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.91,
2064
+ "grad_norm": 0.5024898891939928,
2065
+ "learning_rate": 2.2354244787996748e-06,
2066
+ "loss": 1.1289,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.91,
2071
+ "grad_norm": 0.5279824056783474,
2072
+ "learning_rate": 2.0899098099192273e-06,
2073
+ "loss": 1.1672,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.91,
2078
+ "grad_norm": 0.5379712149279697,
2079
+ "learning_rate": 1.9491909714230204e-06,
2080
+ "loss": 1.1858,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.91,
2085
+ "grad_norm": 0.5436100119596193,
2086
+ "learning_rate": 1.8132820493559521e-06,
2087
+ "loss": 1.1201,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.92,
2092
+ "grad_norm": 0.5015550141769547,
2093
+ "learning_rate": 1.6821966482872264e-06,
2094
+ "loss": 1.1797,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.92,
2099
+ "grad_norm": 0.5119620808666944,
2100
+ "learning_rate": 1.5559478899485447e-06,
2101
+ "loss": 1.1493,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.92,
2106
+ "grad_norm": 0.4977128949907143,
2107
+ "learning_rate": 1.434548411920622e-06,
2108
+ "loss": 1.1821,
2109
+ "step": 300
2110
+ }
2111
+ ],
2112
+ "logging_steps": 1.0,
2113
+ "max_steps": 324,
2114
+ "num_input_tokens_seen": 0,
2115
+ "num_train_epochs": 1,
2116
+ "save_steps": 20,
2117
+ "total_flos": 2.736962932582646e+18,
2118
+ "train_batch_size": 16,
2119
+ "trial_name": null,
2120
+ "trial_params": null
2121
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f20677a2ff6badcbfb3707fb2d9d9e2ee25e726ed7144276fc52ec843930e05c
3
+ size 6584
checkpoint-300/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/model_zoo/Vivid-7B-base",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bert_type": "raw_bert_layer:12",
8
+ "bos_token_id": 1,
9
+ "compress_type": "mean",
10
+ "eos_token_id": 2,
11
+ "freeze_mm_mlp_adapter": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_grid_pinpoints": null,
16
+ "image_processor": "./llamavid/processor/clip-patch14-224",
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 32768,
20
+ "max_token": 4096,
21
+ "mm_hidden_size": 1024,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_use_im_patch_token": false,
24
+ "mm_use_im_start_end": false,
25
+ "mm_vision_select_feature": "patch",
26
+ "mm_vision_select_layer": -2,
27
+ "mm_vision_tower": "/model_zoo/openai-clip-vit-large-patch14",
28
+ "model_type": "mistral",
29
+ "num_attention_heads": 32,
30
+ "num_hidden_layers": 32,
31
+ "num_key_value_heads": 8,
32
+ "num_query": 32,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_theta": 10000.0,
35
+ "sliding_window": 4096,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.38.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "use_cache": true,
41
+ "use_mm_proj": true,
42
+ "vocab_size": 48384
43
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d592844bd597e67cb6ac1906125c4b517602f9faf6be80ae7422d1088f57c54c
3
+ size 987789762
trainer_state.json ADDED
@@ -0,0 +1,2298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9974985568597268,
5
+ "eval_steps": 500,
6
+ "global_step": 324,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 3.3905354112155957,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.5601,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 3.2069311238141744,
21
+ "learning_rate": 2e-05,
22
+ "loss": 1.5425,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 2.329876685543184,
28
+ "learning_rate": 3e-05,
29
+ "loss": 1.5518,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 1.3279617694098214,
35
+ "learning_rate": 4e-05,
36
+ "loss": 1.4658,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.02,
41
+ "grad_norm": 1.3546782512787179,
42
+ "learning_rate": 5e-05,
43
+ "loss": 1.4736,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.02,
48
+ "grad_norm": 1.6365619709572907,
49
+ "learning_rate": 6e-05,
50
+ "loss": 1.4756,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "grad_norm": 1.2081088328094727,
56
+ "learning_rate": 7e-05,
57
+ "loss": 1.3752,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.02,
62
+ "grad_norm": 1.0574546767027917,
63
+ "learning_rate": 8e-05,
64
+ "loss": 1.439,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.03,
69
+ "grad_norm": 1.0012858470947548,
70
+ "learning_rate": 9e-05,
71
+ "loss": 1.4502,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.03,
76
+ "grad_norm": 1.0136463608511321,
77
+ "learning_rate": 0.0001,
78
+ "loss": 1.396,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.03,
83
+ "grad_norm": 0.9854986957079499,
84
+ "learning_rate": 9.999749748415981e-05,
85
+ "loss": 1.4634,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.04,
90
+ "grad_norm": 0.9239702875144448,
91
+ "learning_rate": 9.998999018714263e-05,
92
+ "loss": 1.4185,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "grad_norm": 0.9233186885946617,
98
+ "learning_rate": 9.997747886043367e-05,
99
+ "loss": 1.3691,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.04,
104
+ "grad_norm": 0.8728080646228755,
105
+ "learning_rate": 9.995996475642466e-05,
106
+ "loss": 1.3569,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.05,
111
+ "grad_norm": 0.8307436189120798,
112
+ "learning_rate": 9.99374496282885e-05,
113
+ "loss": 1.3667,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.05,
118
+ "grad_norm": 0.7939681765489442,
119
+ "learning_rate": 9.990993572980378e-05,
120
+ "loss": 1.3589,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.05,
125
+ "grad_norm": 0.7980526587202514,
126
+ "learning_rate": 9.987742581512918e-05,
127
+ "loss": 1.395,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.06,
132
+ "grad_norm": 0.7207026961586376,
133
+ "learning_rate": 9.983992313852774e-05,
134
+ "loss": 1.3887,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.06,
139
+ "grad_norm": 0.7871310923443939,
140
+ "learning_rate": 9.979743145404119e-05,
141
+ "loss": 1.3062,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.06,
146
+ "grad_norm": 0.7246807835643384,
147
+ "learning_rate": 9.974995501511404e-05,
148
+ "loss": 1.4028,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.06,
153
+ "grad_norm": 0.7206361737972257,
154
+ "learning_rate": 9.969749857416789e-05,
155
+ "loss": 1.3398,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.07,
160
+ "grad_norm": 0.6960105391155793,
161
+ "learning_rate": 9.964006738212575e-05,
162
+ "loss": 1.3469,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.07,
167
+ "grad_norm": 0.7204455050781057,
168
+ "learning_rate": 9.957766718788633e-05,
169
+ "loss": 1.3765,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.07,
174
+ "grad_norm": 0.5812596677574942,
175
+ "learning_rate": 9.951030423774859e-05,
176
+ "loss": 1.3379,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "grad_norm": 0.675904894861765,
182
+ "learning_rate": 9.943798527478651e-05,
183
+ "loss": 1.3789,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.08,
188
+ "grad_norm": 0.6664199931252878,
189
+ "learning_rate": 9.936071753817415e-05,
190
+ "loss": 1.3535,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.08,
195
+ "grad_norm": 0.7030363325377104,
196
+ "learning_rate": 9.927850876246088e-05,
197
+ "loss": 1.218,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.09,
202
+ "grad_norm": 0.6185910243439269,
203
+ "learning_rate": 9.919136717679722e-05,
204
+ "loss": 1.3501,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.09,
209
+ "grad_norm": 0.6270496500828271,
210
+ "learning_rate": 9.909930150411113e-05,
211
+ "loss": 1.3628,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.09,
216
+ "grad_norm": 0.6021577621428597,
217
+ "learning_rate": 9.900232096023477e-05,
218
+ "loss": 1.3428,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.1,
223
+ "grad_norm": 0.6760900210464318,
224
+ "learning_rate": 9.890043525298203e-05,
225
+ "loss": 1.3079,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1,
230
+ "grad_norm": 0.5940959503401227,
231
+ "learning_rate": 9.879365458117678e-05,
232
+ "loss": 1.291,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1,
237
+ "grad_norm": 0.5427094594745479,
238
+ "learning_rate": 9.868198963363189e-05,
239
+ "loss": 1.2893,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1,
244
+ "grad_norm": 0.5958301777472343,
245
+ "learning_rate": 9.856545158807938e-05,
246
+ "loss": 1.2363,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.11,
251
+ "grad_norm": 0.5850214722817281,
252
+ "learning_rate": 9.844405211005146e-05,
253
+ "loss": 1.3154,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.11,
258
+ "grad_norm": 0.6172288827652985,
259
+ "learning_rate": 9.831780335171279e-05,
260
+ "loss": 1.3101,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.11,
265
+ "grad_norm": 0.5728085013088785,
266
+ "learning_rate": 9.818671795064404e-05,
267
+ "loss": 1.2817,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.12,
272
+ "grad_norm": 0.5979780148525169,
273
+ "learning_rate": 9.805080902857699e-05,
274
+ "loss": 1.2493,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.12,
279
+ "grad_norm": 0.537951216091522,
280
+ "learning_rate": 9.791009019008078e-05,
281
+ "loss": 1.2454,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.12,
286
+ "grad_norm": 0.5879388223555754,
287
+ "learning_rate": 9.776457552120033e-05,
288
+ "loss": 1.2744,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.13,
293
+ "grad_norm": 0.5828144715679795,
294
+ "learning_rate": 9.761427958804621e-05,
295
+ "loss": 1.2354,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.13,
300
+ "grad_norm": 0.5640545987289305,
301
+ "learning_rate": 9.745921743533653e-05,
302
+ "loss": 1.3105,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.13,
307
+ "grad_norm": 0.6077402891626962,
308
+ "learning_rate": 9.729940458489104e-05,
309
+ "loss": 1.3188,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.14,
314
+ "grad_norm": 0.5649165442230879,
315
+ "learning_rate": 9.713485703407731e-05,
316
+ "loss": 1.2756,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.14,
321
+ "grad_norm": 0.5751090024359722,
322
+ "learning_rate": 9.696559125420948e-05,
323
+ "loss": 1.2336,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.14,
328
+ "grad_norm": 0.5415492855376868,
329
+ "learning_rate": 9.679162418889931e-05,
330
+ "loss": 1.2424,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.14,
335
+ "grad_norm": 0.5742691889803935,
336
+ "learning_rate": 9.66129732523603e-05,
337
+ "loss": 1.2363,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.15,
342
+ "grad_norm": 0.5763001671560306,
343
+ "learning_rate": 9.642965632766436e-05,
344
+ "loss": 1.2661,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.15,
349
+ "grad_norm": 0.5940077836695673,
350
+ "learning_rate": 9.624169176495184e-05,
351
+ "loss": 1.2734,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.15,
356
+ "grad_norm": 0.6005566973905004,
357
+ "learning_rate": 9.604909837959455e-05,
358
+ "loss": 1.2078,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.16,
363
+ "grad_norm": 0.5429670344508561,
364
+ "learning_rate": 9.585189545031238e-05,
365
+ "loss": 1.2246,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.16,
370
+ "grad_norm": 0.5871060174846529,
371
+ "learning_rate": 9.565010271724352e-05,
372
+ "loss": 1.3501,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.16,
377
+ "grad_norm": 0.5907025473048154,
378
+ "learning_rate": 9.54437403799684e-05,
379
+ "loss": 1.2729,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.17,
384
+ "grad_norm": 0.6516780485358238,
385
+ "learning_rate": 9.523282909548773e-05,
386
+ "loss": 1.2881,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.17,
391
+ "grad_norm": 0.5670548168352986,
392
+ "learning_rate": 9.50173899761547e-05,
393
+ "loss": 1.2056,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.17,
398
+ "grad_norm": 0.5390303783246289,
399
+ "learning_rate": 9.47974445875617e-05,
400
+ "loss": 1.2144,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.18,
405
+ "grad_norm": 0.5646076772019145,
406
+ "learning_rate": 9.457301494638147e-05,
407
+ "loss": 1.2212,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.18,
412
+ "grad_norm": 0.5612167041328082,
413
+ "learning_rate": 9.434412351816328e-05,
414
+ "loss": 1.2717,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.18,
419
+ "grad_norm": 0.5263144027788276,
420
+ "learning_rate": 9.411079321508414e-05,
421
+ "loss": 1.2112,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.18,
426
+ "grad_norm": 0.5356079649939604,
427
+ "learning_rate": 9.387304739365523e-05,
428
+ "loss": 1.2234,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.19,
433
+ "grad_norm": 0.5615087563747105,
434
+ "learning_rate": 9.36309098523839e-05,
435
+ "loss": 1.2996,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.19,
440
+ "grad_norm": 0.5314023973665841,
441
+ "learning_rate": 9.338440482939146e-05,
442
+ "loss": 1.1797,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.19,
447
+ "grad_norm": 0.5539257915730327,
448
+ "learning_rate": 9.31335569999869e-05,
449
+ "loss": 1.2395,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2,
454
+ "grad_norm": 0.5648098416860655,
455
+ "learning_rate": 9.287839147419686e-05,
456
+ "loss": 1.2156,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.2,
461
+ "grad_norm": 0.5865707594533118,
462
+ "learning_rate": 9.261893379425218e-05,
463
+ "loss": 1.2683,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2,
468
+ "grad_norm": 0.5440049015077518,
469
+ "learning_rate": 9.2355209932031e-05,
470
+ "loss": 1.1853,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.21,
475
+ "grad_norm": 0.5440912007358205,
476
+ "learning_rate": 9.208724628645902e-05,
477
+ "loss": 1.207,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.21,
482
+ "grad_norm": 0.5587040510710671,
483
+ "learning_rate": 9.181506968086697e-05,
484
+ "loss": 1.1768,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.21,
489
+ "grad_norm": 0.5192024047252568,
490
+ "learning_rate": 9.153870736030548e-05,
491
+ "loss": 1.2427,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.22,
496
+ "grad_norm": 0.528230045301502,
497
+ "learning_rate": 9.125818698881798e-05,
498
+ "loss": 1.2168,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.22,
503
+ "grad_norm": 0.5562754356167662,
504
+ "learning_rate": 9.097353664667138e-05,
505
+ "loss": 1.2793,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.22,
510
+ "grad_norm": 0.5415713371356312,
511
+ "learning_rate": 9.068478482754532e-05,
512
+ "loss": 1.2334,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.22,
517
+ "grad_norm": 0.5683526535348254,
518
+ "learning_rate": 9.03919604356798e-05,
519
+ "loss": 1.2534,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.23,
524
+ "grad_norm": 0.5396091696393609,
525
+ "learning_rate": 9.0095092782982e-05,
526
+ "loss": 1.2722,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.23,
531
+ "grad_norm": 0.513589724983156,
532
+ "learning_rate": 8.979421158609206e-05,
533
+ "loss": 1.2083,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.23,
538
+ "grad_norm": 0.5376666654796496,
539
+ "learning_rate": 8.948934696340843e-05,
540
+ "loss": 1.1931,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.24,
545
+ "grad_norm": 0.5368664737517322,
546
+ "learning_rate": 8.918052943207298e-05,
547
+ "loss": 1.2202,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.24,
552
+ "grad_norm": 0.5263413266320822,
553
+ "learning_rate": 8.886778990491631e-05,
554
+ "loss": 1.1553,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.24,
559
+ "grad_norm": 0.5604541523029579,
560
+ "learning_rate": 8.85511596873632e-05,
561
+ "loss": 1.2964,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.25,
566
+ "grad_norm": 0.5427504321680312,
567
+ "learning_rate": 8.823067047429907e-05,
568
+ "loss": 1.2896,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.25,
573
+ "grad_norm": 0.5474275345159585,
574
+ "learning_rate": 8.790635434689721e-05,
575
+ "loss": 1.2612,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.25,
580
+ "grad_norm": 0.5269654905955425,
581
+ "learning_rate": 8.757824376940746e-05,
582
+ "loss": 1.1821,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.26,
587
+ "grad_norm": 0.518380839571753,
588
+ "learning_rate": 8.724637158590652e-05,
589
+ "loss": 1.2393,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.26,
594
+ "grad_norm": 0.5158889921158187,
595
+ "learning_rate": 8.691077101701024e-05,
596
+ "loss": 1.2754,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.26,
601
+ "grad_norm": 0.4935757204910804,
602
+ "learning_rate": 8.65714756565482e-05,
603
+ "loss": 1.2173,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.26,
608
+ "grad_norm": 0.5653934280740491,
609
+ "learning_rate": 8.622851946820095e-05,
610
+ "loss": 1.2253,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.27,
615
+ "grad_norm": 0.5250362872573285,
616
+ "learning_rate": 8.588193678210026e-05,
617
+ "loss": 1.1707,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.27,
622
+ "grad_norm": 0.5446362423647451,
623
+ "learning_rate": 8.553176229139261e-05,
624
+ "loss": 1.1589,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.27,
629
+ "grad_norm": 0.5142920460404157,
630
+ "learning_rate": 8.517803104876639e-05,
631
+ "loss": 1.1948,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.28,
636
+ "grad_norm": 0.5317755291367837,
637
+ "learning_rate": 8.482077846294308e-05,
638
+ "loss": 1.1812,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.28,
643
+ "grad_norm": 0.5147982642702206,
644
+ "learning_rate": 8.446004029513294e-05,
645
+ "loss": 1.2266,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.28,
650
+ "grad_norm": 0.5096116915413985,
651
+ "learning_rate": 8.409585265545509e-05,
652
+ "loss": 1.179,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.29,
657
+ "grad_norm": 0.49910238964612424,
658
+ "learning_rate": 8.372825199932304e-05,
659
+ "loss": 1.2485,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.29,
664
+ "grad_norm": 0.5507929652198581,
665
+ "learning_rate": 8.335727512379534e-05,
666
+ "loss": 1.2388,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.29,
671
+ "grad_norm": 0.5063227228339493,
672
+ "learning_rate": 8.298295916389234e-05,
673
+ "loss": 1.2415,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3,
678
+ "grad_norm": 0.48774944558422,
679
+ "learning_rate": 8.260534158887876e-05,
680
+ "loss": 1.1301,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.3,
685
+ "grad_norm": 0.5131731261481731,
686
+ "learning_rate": 8.222446019851314e-05,
687
+ "loss": 1.2158,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3,
692
+ "grad_norm": 0.49068550228239954,
693
+ "learning_rate": 8.184035311926396e-05,
694
+ "loss": 1.1968,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3,
699
+ "grad_norm": 0.5288695654598018,
700
+ "learning_rate": 8.145305880049328e-05,
701
+ "loss": 1.2637,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.31,
706
+ "grad_norm": 0.5479388159051014,
707
+ "learning_rate": 8.106261601060772e-05,
708
+ "loss": 1.3218,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.31,
713
+ "grad_norm": 0.5621161336370604,
714
+ "learning_rate": 8.066906383317801e-05,
715
+ "loss": 1.1729,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.31,
720
+ "grad_norm": 0.4924846556483893,
721
+ "learning_rate": 8.027244166302642e-05,
722
+ "loss": 1.1875,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.32,
727
+ "grad_norm": 0.5037791405351364,
728
+ "learning_rate": 7.987278920228349e-05,
729
+ "loss": 1.2539,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.32,
734
+ "grad_norm": 0.522728960991421,
735
+ "learning_rate": 7.947014645641379e-05,
736
+ "loss": 1.2217,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.32,
741
+ "grad_norm": 0.5182027559256257,
742
+ "learning_rate": 7.906455373021129e-05,
743
+ "loss": 1.2188,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.33,
748
+ "grad_norm": 0.5539472403444413,
749
+ "learning_rate": 7.865605162376486e-05,
750
+ "loss": 1.1509,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.33,
755
+ "grad_norm": 0.5439005321857965,
756
+ "learning_rate": 7.824468102839419e-05,
757
+ "loss": 1.251,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.33,
762
+ "grad_norm": 0.5093593984665626,
763
+ "learning_rate": 7.783048312255653e-05,
764
+ "loss": 1.229,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.34,
769
+ "grad_norm": 0.5145253165856254,
770
+ "learning_rate": 7.741349936772469e-05,
771
+ "loss": 1.1824,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.34,
776
+ "grad_norm": 0.5702243863746732,
777
+ "learning_rate": 7.699377150423672e-05,
778
+ "loss": 1.1582,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.34,
783
+ "grad_norm": 0.5451183103162889,
784
+ "learning_rate": 7.65713415471177e-05,
785
+ "loss": 1.2122,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.34,
790
+ "grad_norm": 0.5252426501201418,
791
+ "learning_rate": 7.614625178187402e-05,
792
+ "loss": 1.1833,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.35,
797
+ "grad_norm": 0.48749296422821287,
798
+ "learning_rate": 7.571854476026048e-05,
799
+ "loss": 1.2705,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.35,
804
+ "grad_norm": 0.502002191255964,
805
+ "learning_rate": 7.528826329602099e-05,
806
+ "loss": 1.2188,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.35,
811
+ "grad_norm": 0.48918503246260797,
812
+ "learning_rate": 7.485545046060271e-05,
813
+ "loss": 1.1997,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.36,
818
+ "grad_norm": 0.5000600132443745,
819
+ "learning_rate": 7.442014957884472e-05,
820
+ "loss": 1.2051,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.36,
825
+ "grad_norm": 0.5463372631998543,
826
+ "learning_rate": 7.398240422464109e-05,
827
+ "loss": 1.2214,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.36,
832
+ "grad_norm": 0.4961344121724833,
833
+ "learning_rate": 7.354225821657914e-05,
834
+ "loss": 1.208,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.37,
839
+ "grad_norm": 0.5899278757904003,
840
+ "learning_rate": 7.309975561355312e-05,
841
+ "loss": 1.146,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.37,
846
+ "grad_norm": 0.5023010444635025,
847
+ "learning_rate": 7.265494071035401e-05,
848
+ "loss": 1.1509,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.37,
853
+ "grad_norm": 0.5098342526132932,
854
+ "learning_rate": 7.220785803323544e-05,
855
+ "loss": 1.1743,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.38,
860
+ "grad_norm": 0.5181510224338065,
861
+ "learning_rate": 7.175855233545668e-05,
862
+ "loss": 1.1807,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.38,
867
+ "grad_norm": 0.5126009147492929,
868
+ "learning_rate": 7.130706859280274e-05,
869
+ "loss": 1.1875,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.38,
874
+ "grad_norm": 0.5694155609516423,
875
+ "learning_rate": 7.085345199908235e-05,
876
+ "loss": 1.1428,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.38,
881
+ "grad_norm": 0.5320176914945207,
882
+ "learning_rate": 7.03977479616039e-05,
883
+ "loss": 1.219,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.39,
888
+ "grad_norm": 0.5263190337396886,
889
+ "learning_rate": 6.994000209663036e-05,
890
+ "loss": 1.1709,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.39,
895
+ "grad_norm": 0.5043242059465939,
896
+ "learning_rate": 6.948026022481279e-05,
897
+ "loss": 1.1968,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.39,
902
+ "grad_norm": 0.5580562389957314,
903
+ "learning_rate": 6.901856836660386e-05,
904
+ "loss": 1.1494,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4,
909
+ "grad_norm": 0.495782343949626,
910
+ "learning_rate": 6.855497273765112e-05,
911
+ "loss": 1.2119,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.4,
916
+ "grad_norm": 0.49510379613102157,
917
+ "learning_rate": 6.808951974417078e-05,
918
+ "loss": 1.2063,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4,
923
+ "grad_norm": 0.5536322418977505,
924
+ "learning_rate": 6.762225597830237e-05,
925
+ "loss": 1.2617,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.41,
930
+ "grad_norm": 0.5668665640341709,
931
+ "learning_rate": 6.715322821344494e-05,
932
+ "loss": 1.1443,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.41,
937
+ "grad_norm": 0.5083973254687169,
938
+ "learning_rate": 6.668248339957491e-05,
939
+ "loss": 1.2588,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.41,
944
+ "grad_norm": 0.5188609075674584,
945
+ "learning_rate": 6.621006865854644e-05,
946
+ "loss": 1.1726,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.42,
951
+ "grad_norm": 0.5083154005353754,
952
+ "learning_rate": 6.573603127937442e-05,
953
+ "loss": 1.1953,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.42,
958
+ "grad_norm": 0.544802137981313,
959
+ "learning_rate": 6.526041871350086e-05,
960
+ "loss": 1.1853,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.42,
965
+ "grad_norm": 0.4692918589408204,
966
+ "learning_rate": 6.478327857004495e-05,
967
+ "loss": 1.1267,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.42,
972
+ "grad_norm": 0.504019443454899,
973
+ "learning_rate": 6.43046586110374e-05,
974
+ "loss": 1.2085,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.43,
979
+ "grad_norm": 0.5071221863228176,
980
+ "learning_rate": 6.382460674663932e-05,
981
+ "loss": 1.2026,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.43,
986
+ "grad_norm": 0.5146798822767533,
987
+ "learning_rate": 6.334317103034652e-05,
988
+ "loss": 1.1177,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.43,
993
+ "grad_norm": 0.4996775842843673,
994
+ "learning_rate": 6.286039965417925e-05,
995
+ "loss": 1.1711,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.44,
1000
+ "grad_norm": 0.5288823443570614,
1001
+ "learning_rate": 6.237634094385813e-05,
1002
+ "loss": 1.1199,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.44,
1007
+ "grad_norm": 0.5214584824734313,
1008
+ "learning_rate": 6.18910433539668e-05,
1009
+ "loss": 1.1199,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.44,
1014
+ "grad_norm": 0.5287174552858058,
1015
+ "learning_rate": 6.140455546310148e-05,
1016
+ "loss": 1.2134,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.45,
1021
+ "grad_norm": 0.5254574455344191,
1022
+ "learning_rate": 6.0916925969008275e-05,
1023
+ "loss": 1.2578,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.45,
1028
+ "grad_norm": 0.5189177716169284,
1029
+ "learning_rate": 6.042820368370854e-05,
1030
+ "loss": 1.2236,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.45,
1035
+ "grad_norm": 0.5680190447979175,
1036
+ "learning_rate": 5.993843752861266e-05,
1037
+ "loss": 1.1443,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.46,
1042
+ "grad_norm": 0.471841513545942,
1043
+ "learning_rate": 5.944767652962309e-05,
1044
+ "loss": 1.1733,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.46,
1049
+ "grad_norm": 0.5131643851734395,
1050
+ "learning_rate": 5.895596981222678e-05,
1051
+ "loss": 1.1592,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.46,
1056
+ "grad_norm": 0.5069414300839418,
1057
+ "learning_rate": 5.8463366596577706e-05,
1058
+ "loss": 1.2537,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.46,
1063
+ "grad_norm": 0.5239372199223642,
1064
+ "learning_rate": 5.796991619256985e-05,
1065
+ "loss": 1.1743,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.47,
1070
+ "grad_norm": 0.5387326952860074,
1071
+ "learning_rate": 5.747566799490132e-05,
1072
+ "loss": 1.2075,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.47,
1077
+ "grad_norm": 0.5224076525892895,
1078
+ "learning_rate": 5.6980671478129853e-05,
1079
+ "loss": 1.2515,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.47,
1084
+ "grad_norm": 0.5609147216869792,
1085
+ "learning_rate": 5.648497619172042e-05,
1086
+ "loss": 1.1836,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.48,
1091
+ "grad_norm": 0.5465488763290158,
1092
+ "learning_rate": 5.5988631755085264e-05,
1093
+ "loss": 1.1433,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.48,
1098
+ "grad_norm": 0.5079660248232113,
1099
+ "learning_rate": 5.549168785261698e-05,
1100
+ "loss": 1.1812,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.48,
1105
+ "grad_norm": 0.5717154092705009,
1106
+ "learning_rate": 5.499419422871506e-05,
1107
+ "loss": 1.2068,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.49,
1112
+ "grad_norm": 0.5301493442832448,
1113
+ "learning_rate": 5.4496200682806495e-05,
1114
+ "loss": 1.2273,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.49,
1119
+ "grad_norm": 0.5098890110687092,
1120
+ "learning_rate": 5.399775706436076e-05,
1121
+ "loss": 1.2134,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.49,
1126
+ "grad_norm": 0.5365690403371399,
1127
+ "learning_rate": 5.3498913267899864e-05,
1128
+ "loss": 1.2051,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5,
1133
+ "grad_norm": 0.5002287628666306,
1134
+ "learning_rate": 5.299971922800391e-05,
1135
+ "loss": 1.1255,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5,
1140
+ "grad_norm": 0.5276270904967929,
1141
+ "learning_rate": 5.250022491431259e-05,
1142
+ "loss": 1.2124,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5,
1147
+ "grad_norm": 0.5224515486361312,
1148
+ "learning_rate": 5.200048032652318e-05,
1149
+ "loss": 1.2559,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5,
1154
+ "grad_norm": 0.49316666866194575,
1155
+ "learning_rate": 5.150053548938557e-05,
1156
+ "loss": 1.1421,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.51,
1161
+ "grad_norm": 0.5388196993705506,
1162
+ "learning_rate": 5.100044044769472e-05,
1163
+ "loss": 1.2017,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.51,
1168
+ "grad_norm": 0.4944161877205336,
1169
+ "learning_rate": 5.0500245261281175e-05,
1170
+ "loss": 1.1838,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.51,
1175
+ "grad_norm": 0.5075949586376647,
1176
+ "learning_rate": 5e-05,
1177
+ "loss": 1.2698,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.52,
1182
+ "grad_norm": 0.5288349964384436,
1183
+ "learning_rate": 4.949975473871884e-05,
1184
+ "loss": 1.2051,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.52,
1189
+ "grad_norm": 0.5298564213314307,
1190
+ "learning_rate": 4.899955955230529e-05,
1191
+ "loss": 1.1921,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.52,
1196
+ "grad_norm": 0.5006832164442894,
1197
+ "learning_rate": 4.849946451061443e-05,
1198
+ "loss": 1.0999,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.53,
1203
+ "grad_norm": 0.5180365116427443,
1204
+ "learning_rate": 4.799951967347683e-05,
1205
+ "loss": 1.1248,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.53,
1210
+ "grad_norm": 0.5085456414296031,
1211
+ "learning_rate": 4.749977508568742e-05,
1212
+ "loss": 1.0989,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.53,
1217
+ "grad_norm": 0.5062569741436713,
1218
+ "learning_rate": 4.7000280771996104e-05,
1219
+ "loss": 1.1851,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.54,
1224
+ "grad_norm": 0.49915526983252295,
1225
+ "learning_rate": 4.650108673210015e-05,
1226
+ "loss": 1.1565,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.54,
1231
+ "grad_norm": 0.530737295373366,
1232
+ "learning_rate": 4.6002242935639254e-05,
1233
+ "loss": 1.1367,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.54,
1238
+ "grad_norm": 0.5354173274123866,
1239
+ "learning_rate": 4.550379931719351e-05,
1240
+ "loss": 1.2231,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.54,
1245
+ "grad_norm": 0.4910072525351625,
1246
+ "learning_rate": 4.500580577128495e-05,
1247
+ "loss": 1.2354,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.55,
1252
+ "grad_norm": 0.5227332856552718,
1253
+ "learning_rate": 4.4508312147383036e-05,
1254
+ "loss": 1.2178,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.55,
1259
+ "grad_norm": 0.5288368214749951,
1260
+ "learning_rate": 4.4011368244914755e-05,
1261
+ "loss": 1.1731,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.55,
1266
+ "grad_norm": 0.5044952842565356,
1267
+ "learning_rate": 4.3515023808279586e-05,
1268
+ "loss": 1.1287,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.56,
1273
+ "grad_norm": 0.5325342803705855,
1274
+ "learning_rate": 4.301932852187016e-05,
1275
+ "loss": 1.2129,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.56,
1280
+ "grad_norm": 0.5415040662560654,
1281
+ "learning_rate": 4.252433200509869e-05,
1282
+ "loss": 1.3086,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.56,
1287
+ "grad_norm": 0.51763854212227,
1288
+ "learning_rate": 4.203008380743016e-05,
1289
+ "loss": 1.1216,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.57,
1294
+ "grad_norm": 0.5422430582487087,
1295
+ "learning_rate": 4.1536633403422306e-05,
1296
+ "loss": 1.1111,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.57,
1301
+ "grad_norm": 0.5022269460427503,
1302
+ "learning_rate": 4.104403018777323e-05,
1303
+ "loss": 1.1963,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.57,
1308
+ "grad_norm": 0.5631689643987351,
1309
+ "learning_rate": 4.0552323470376916e-05,
1310
+ "loss": 1.261,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.58,
1315
+ "grad_norm": 0.5083595167881586,
1316
+ "learning_rate": 4.006156247138736e-05,
1317
+ "loss": 1.2529,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.58,
1322
+ "grad_norm": 0.4982995201328196,
1323
+ "learning_rate": 3.9571796316291476e-05,
1324
+ "loss": 1.1938,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.58,
1329
+ "grad_norm": 0.5142407248745989,
1330
+ "learning_rate": 3.908307403099174e-05,
1331
+ "loss": 1.231,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.58,
1336
+ "grad_norm": 0.49845909814685674,
1337
+ "learning_rate": 3.859544453689853e-05,
1338
+ "loss": 1.1174,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.59,
1343
+ "grad_norm": 0.5044393346608876,
1344
+ "learning_rate": 3.810895664603321e-05,
1345
+ "loss": 1.1626,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.59,
1350
+ "grad_norm": 0.5028906716759755,
1351
+ "learning_rate": 3.762365905614187e-05,
1352
+ "loss": 1.1248,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.59,
1357
+ "grad_norm": 0.5052094751619233,
1358
+ "learning_rate": 3.713960034582077e-05,
1359
+ "loss": 1.1782,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.6,
1364
+ "grad_norm": 0.4927933528160678,
1365
+ "learning_rate": 3.665682896965349e-05,
1366
+ "loss": 1.1411,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.6,
1371
+ "grad_norm": 0.5194837061389329,
1372
+ "learning_rate": 3.61753932533607e-05,
1373
+ "loss": 1.1194,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.6,
1378
+ "grad_norm": 0.5003507430931593,
1379
+ "learning_rate": 3.5695341388962614e-05,
1380
+ "loss": 1.1438,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.61,
1385
+ "grad_norm": 0.4952909851844929,
1386
+ "learning_rate": 3.521672142995506e-05,
1387
+ "loss": 1.1274,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.61,
1392
+ "grad_norm": 0.515058338420701,
1393
+ "learning_rate": 3.473958128649915e-05,
1394
+ "loss": 1.2173,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.61,
1399
+ "grad_norm": 0.4649441022469789,
1400
+ "learning_rate": 3.4263968720625594e-05,
1401
+ "loss": 1.0901,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.62,
1406
+ "grad_norm": 0.5257495392411118,
1407
+ "learning_rate": 3.378993134145356e-05,
1408
+ "loss": 1.2124,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.62,
1413
+ "grad_norm": 0.4932641665110047,
1414
+ "learning_rate": 3.33175166004251e-05,
1415
+ "loss": 1.2024,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.62,
1420
+ "grad_norm": 0.47986279797474973,
1421
+ "learning_rate": 3.284677178655507e-05,
1422
+ "loss": 1.199,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.62,
1427
+ "grad_norm": 0.5192526802216362,
1428
+ "learning_rate": 3.2377744021697644e-05,
1429
+ "loss": 1.1348,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.63,
1434
+ "grad_norm": 0.49075397683891514,
1435
+ "learning_rate": 3.1910480255829237e-05,
1436
+ "loss": 1.209,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.63,
1441
+ "grad_norm": 0.5308583566356849,
1442
+ "learning_rate": 3.1445027262348894e-05,
1443
+ "loss": 1.1843,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.63,
1448
+ "grad_norm": 0.4754800140640908,
1449
+ "learning_rate": 3.098143163339615e-05,
1450
+ "loss": 1.0713,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.64,
1455
+ "grad_norm": 0.48744339587851926,
1456
+ "learning_rate": 3.051973977518723e-05,
1457
+ "loss": 1.1589,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.64,
1462
+ "grad_norm": 0.538169296667757,
1463
+ "learning_rate": 3.0059997903369656e-05,
1464
+ "loss": 1.1636,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.64,
1469
+ "grad_norm": 0.5174008006678488,
1470
+ "learning_rate": 2.9602252038396093e-05,
1471
+ "loss": 1.0088,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.65,
1476
+ "grad_norm": 0.5423637270068683,
1477
+ "learning_rate": 2.914654800091768e-05,
1478
+ "loss": 1.2637,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.65,
1483
+ "grad_norm": 0.49532340168296196,
1484
+ "learning_rate": 2.8692931407197275e-05,
1485
+ "loss": 1.1211,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.65,
1490
+ "grad_norm": 0.5223772948936137,
1491
+ "learning_rate": 2.824144766454333e-05,
1492
+ "loss": 1.1392,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.66,
1497
+ "grad_norm": 0.5301272448221841,
1498
+ "learning_rate": 2.7792141966764568e-05,
1499
+ "loss": 1.1663,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.66,
1504
+ "grad_norm": 0.5241453393589025,
1505
+ "learning_rate": 2.7345059289646008e-05,
1506
+ "loss": 1.1375,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.66,
1511
+ "grad_norm": 0.4946190439071369,
1512
+ "learning_rate": 2.6900244386446904e-05,
1513
+ "loss": 1.1843,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.66,
1518
+ "grad_norm": 0.4894503682723616,
1519
+ "learning_rate": 2.6457741783420886e-05,
1520
+ "loss": 1.1492,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.67,
1525
+ "grad_norm": 0.4852212167430057,
1526
+ "learning_rate": 2.6017595775358926e-05,
1527
+ "loss": 1.1592,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.67,
1532
+ "grad_norm": 0.5560815990000127,
1533
+ "learning_rate": 2.5579850421155293e-05,
1534
+ "loss": 1.1484,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.67,
1539
+ "grad_norm": 0.5035735515547093,
1540
+ "learning_rate": 2.514454953939731e-05,
1541
+ "loss": 1.1381,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.68,
1546
+ "grad_norm": 0.5057189594248047,
1547
+ "learning_rate": 2.4711736703979018e-05,
1548
+ "loss": 1.2036,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.68,
1553
+ "grad_norm": 0.5116012961964514,
1554
+ "learning_rate": 2.428145523973952e-05,
1555
+ "loss": 1.2212,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.68,
1560
+ "grad_norm": 0.48593835956939924,
1561
+ "learning_rate": 2.3853748218126e-05,
1562
+ "loss": 1.1505,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.69,
1567
+ "grad_norm": 0.5014137656412536,
1568
+ "learning_rate": 2.342865845288232e-05,
1569
+ "loss": 1.2246,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.69,
1574
+ "grad_norm": 0.5223070185696177,
1575
+ "learning_rate": 2.3006228495763295e-05,
1576
+ "loss": 1.158,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.69,
1581
+ "grad_norm": 0.5624122056478932,
1582
+ "learning_rate": 2.258650063227533e-05,
1583
+ "loss": 1.0566,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.7,
1588
+ "grad_norm": 0.5471967527021497,
1589
+ "learning_rate": 2.2169516877443485e-05,
1590
+ "loss": 1.1277,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.7,
1595
+ "grad_norm": 0.48337168913421796,
1596
+ "learning_rate": 2.1755318971605826e-05,
1597
+ "loss": 1.1956,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.7,
1602
+ "grad_norm": 0.5284626857313452,
1603
+ "learning_rate": 2.1343948376235144e-05,
1604
+ "loss": 1.196,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.71,
1609
+ "grad_norm": 0.5837213719579207,
1610
+ "learning_rate": 2.0935446269788717e-05,
1611
+ "loss": 1.0967,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.71,
1616
+ "grad_norm": 0.5165785735037434,
1617
+ "learning_rate": 2.052985354358622e-05,
1618
+ "loss": 1.2036,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.71,
1623
+ "grad_norm": 0.5536196580249753,
1624
+ "learning_rate": 2.0127210797716524e-05,
1625
+ "loss": 1.1572,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.71,
1630
+ "grad_norm": 0.4991948055619459,
1631
+ "learning_rate": 1.9727558336973595e-05,
1632
+ "loss": 1.2112,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.72,
1637
+ "grad_norm": 0.5271303549814744,
1638
+ "learning_rate": 1.933093616682201e-05,
1639
+ "loss": 1.0928,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.72,
1644
+ "grad_norm": 0.4755907436318383,
1645
+ "learning_rate": 1.8937383989392294e-05,
1646
+ "loss": 1.198,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.72,
1651
+ "grad_norm": 0.5071149662683123,
1652
+ "learning_rate": 1.854694119950675e-05,
1653
+ "loss": 1.1602,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.73,
1658
+ "grad_norm": 0.541369836697391,
1659
+ "learning_rate": 1.8159646880736036e-05,
1660
+ "loss": 1.1282,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.73,
1665
+ "grad_norm": 0.5083789491431415,
1666
+ "learning_rate": 1.7775539801486867e-05,
1667
+ "loss": 1.0872,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.73,
1672
+ "grad_norm": 0.5324743232408313,
1673
+ "learning_rate": 1.739465841112125e-05,
1674
+ "loss": 1.2222,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.74,
1679
+ "grad_norm": 0.48387142611649014,
1680
+ "learning_rate": 1.701704083610768e-05,
1681
+ "loss": 1.158,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.74,
1686
+ "grad_norm": 0.5141063576503123,
1687
+ "learning_rate": 1.664272487620466e-05,
1688
+ "loss": 1.1162,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.74,
1693
+ "grad_norm": 0.5408323267729829,
1694
+ "learning_rate": 1.6271748000676983e-05,
1695
+ "loss": 1.02,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.75,
1700
+ "grad_norm": 0.49627165191053163,
1701
+ "learning_rate": 1.590414734454493e-05,
1702
+ "loss": 1.0848,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.75,
1707
+ "grad_norm": 0.5376377474797022,
1708
+ "learning_rate": 1.5539959704867085e-05,
1709
+ "loss": 1.2019,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.75,
1714
+ "grad_norm": 0.49371506434647033,
1715
+ "learning_rate": 1.517922153705692e-05,
1716
+ "loss": 1.2151,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.75,
1721
+ "grad_norm": 0.523592301439241,
1722
+ "learning_rate": 1.4821968951233638e-05,
1723
+ "loss": 1.231,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.76,
1728
+ "grad_norm": 0.5074105674850246,
1729
+ "learning_rate": 1.4468237708607397e-05,
1730
+ "loss": 1.1519,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.76,
1735
+ "grad_norm": 0.5066768606133761,
1736
+ "learning_rate": 1.4118063217899746e-05,
1737
+ "loss": 1.1492,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.76,
1742
+ "grad_norm": 0.5116682098711993,
1743
+ "learning_rate": 1.3771480531799052e-05,
1744
+ "loss": 1.1477,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.77,
1749
+ "grad_norm": 0.5352752339451914,
1750
+ "learning_rate": 1.342852434345181e-05,
1751
+ "loss": 1.0964,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.77,
1756
+ "grad_norm": 0.5418770700535751,
1757
+ "learning_rate": 1.308922898298977e-05,
1758
+ "loss": 1.0803,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.77,
1763
+ "grad_norm": 0.5157514248366463,
1764
+ "learning_rate": 1.2753628414093489e-05,
1765
+ "loss": 1.1614,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.78,
1770
+ "grad_norm": 0.5351720244073139,
1771
+ "learning_rate": 1.2421756230592534e-05,
1772
+ "loss": 1.2224,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.78,
1777
+ "grad_norm": 0.5214450914678166,
1778
+ "learning_rate": 1.2093645653102786e-05,
1779
+ "loss": 1.2302,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.78,
1784
+ "grad_norm": 0.5409585268429792,
1785
+ "learning_rate": 1.1769329525700935e-05,
1786
+ "loss": 1.2104,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.79,
1791
+ "grad_norm": 0.5220300809084372,
1792
+ "learning_rate": 1.144884031263681e-05,
1793
+ "loss": 1.1047,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.79,
1798
+ "grad_norm": 0.5376568328092315,
1799
+ "learning_rate": 1.1132210095083694e-05,
1800
+ "loss": 1.2002,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.79,
1805
+ "grad_norm": 0.5414025185087213,
1806
+ "learning_rate": 1.081947056792702e-05,
1807
+ "loss": 1.1833,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.79,
1812
+ "grad_norm": 0.49383703911170834,
1813
+ "learning_rate": 1.0510653036591583e-05,
1814
+ "loss": 1.199,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.8,
1819
+ "grad_norm": 0.4916712820340113,
1820
+ "learning_rate": 1.0205788413907952e-05,
1821
+ "loss": 1.1292,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.8,
1826
+ "grad_norm": 0.5168351602558782,
1827
+ "learning_rate": 9.904907217018e-06,
1828
+ "loss": 1.2712,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8,
1833
+ "grad_norm": 0.4856958512300068,
1834
+ "learning_rate": 9.608039564320209e-06,
1835
+ "loss": 1.1277,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.81,
1840
+ "grad_norm": 0.5106017400451819,
1841
+ "learning_rate": 9.31521517245469e-06,
1842
+ "loss": 1.1108,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.81,
1847
+ "grad_norm": 0.5036900746833531,
1848
+ "learning_rate": 9.026463353328613e-06,
1849
+ "loss": 1.1748,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.81,
1854
+ "grad_norm": 0.5033379794982934,
1855
+ "learning_rate": 8.741813011182014e-06,
1856
+ "loss": 1.1521,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.82,
1861
+ "grad_norm": 0.5332335505700774,
1862
+ "learning_rate": 8.461292639694518e-06,
1863
+ "loss": 1.0955,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.82,
1868
+ "grad_norm": 0.5125213937729919,
1869
+ "learning_rate": 8.18493031913305e-06,
1870
+ "loss": 1.1089,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.82,
1875
+ "grad_norm": 0.5148264028992737,
1876
+ "learning_rate": 7.912753713540988e-06,
1877
+ "loss": 1.177,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.83,
1882
+ "grad_norm": 0.5229543225675894,
1883
+ "learning_rate": 7.644790067969005e-06,
1884
+ "loss": 1.1646,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.83,
1889
+ "grad_norm": 0.541964343800654,
1890
+ "learning_rate": 7.381066205747822e-06,
1891
+ "loss": 1.1187,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.83,
1896
+ "grad_norm": 0.5266917236869202,
1897
+ "learning_rate": 7.1216085258031414e-06,
1898
+ "loss": 1.0901,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.83,
1903
+ "grad_norm": 0.49725116144459375,
1904
+ "learning_rate": 6.866443000013117e-06,
1905
+ "loss": 1.1526,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.84,
1910
+ "grad_norm": 0.5012370969649222,
1911
+ "learning_rate": 6.6155951706085405e-06,
1912
+ "loss": 1.1689,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.84,
1917
+ "grad_norm": 0.5129519814796674,
1918
+ "learning_rate": 6.369090147616103e-06,
1919
+ "loss": 1.1348,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.84,
1924
+ "grad_norm": 0.4926628244202811,
1925
+ "learning_rate": 6.1269526063447765e-06,
1926
+ "loss": 1.1538,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.85,
1931
+ "grad_norm": 0.5420926972187566,
1932
+ "learning_rate": 5.889206784915862e-06,
1933
+ "loss": 1.1484,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.85,
1938
+ "grad_norm": 0.4950562048422779,
1939
+ "learning_rate": 5.6558764818367195e-06,
1940
+ "loss": 1.2126,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.85,
1945
+ "grad_norm": 0.536783110803186,
1946
+ "learning_rate": 5.426985053618544e-06,
1947
+ "loss": 1.1301,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.86,
1952
+ "grad_norm": 0.5016583572718184,
1953
+ "learning_rate": 5.2025554124383095e-06,
1954
+ "loss": 1.1582,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.86,
1959
+ "grad_norm": 0.5263293678305013,
1960
+ "learning_rate": 4.9826100238453135e-06,
1961
+ "loss": 1.1577,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.86,
1966
+ "grad_norm": 0.5272007649322749,
1967
+ "learning_rate": 4.767170904512292e-06,
1968
+ "loss": 1.167,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.87,
1973
+ "grad_norm": 0.5063050835599103,
1974
+ "learning_rate": 4.556259620031617e-06,
1975
+ "loss": 1.1846,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.87,
1980
+ "grad_norm": 0.4910298010180289,
1981
+ "learning_rate": 4.349897282756487e-06,
1982
+ "loss": 1.1357,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.87,
1987
+ "grad_norm": 0.5379014923521229,
1988
+ "learning_rate": 4.148104549687626e-06,
1989
+ "loss": 1.0798,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.87,
1994
+ "grad_norm": 0.4865878079832316,
1995
+ "learning_rate": 3.95090162040545e-06,
1996
+ "loss": 1.1123,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.88,
2001
+ "grad_norm": 0.5282174531059731,
2002
+ "learning_rate": 3.758308235048158e-06,
2003
+ "loss": 1.1538,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.88,
2008
+ "grad_norm": 0.5010967709298223,
2009
+ "learning_rate": 3.570343672335641e-06,
2010
+ "loss": 1.1392,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.88,
2015
+ "grad_norm": 0.5189711142846094,
2016
+ "learning_rate": 3.38702674763971e-06,
2017
+ "loss": 1.1851,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.89,
2022
+ "grad_norm": 0.49664252429083205,
2023
+ "learning_rate": 3.2083758111006945e-06,
2024
+ "loss": 1.11,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.89,
2029
+ "grad_norm": 0.4859267407564821,
2030
+ "learning_rate": 3.0344087457905346e-06,
2031
+ "loss": 1.1719,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.89,
2036
+ "grad_norm": 0.5151543902141822,
2037
+ "learning_rate": 2.86514296592269e-06,
2038
+ "loss": 1.2102,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.9,
2043
+ "grad_norm": 0.5256996348656279,
2044
+ "learning_rate": 2.7005954151089695e-06,
2045
+ "loss": 1.1709,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.9,
2050
+ "grad_norm": 0.5102631445476464,
2051
+ "learning_rate": 2.54078256466348e-06,
2052
+ "loss": 1.2034,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.9,
2057
+ "grad_norm": 0.5093343267813872,
2058
+ "learning_rate": 2.3857204119538014e-06,
2059
+ "loss": 1.0969,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.91,
2064
+ "grad_norm": 0.5024898891939928,
2065
+ "learning_rate": 2.2354244787996748e-06,
2066
+ "loss": 1.1289,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.91,
2071
+ "grad_norm": 0.5279824056783474,
2072
+ "learning_rate": 2.0899098099192273e-06,
2073
+ "loss": 1.1672,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.91,
2078
+ "grad_norm": 0.5379712149279697,
2079
+ "learning_rate": 1.9491909714230204e-06,
2080
+ "loss": 1.1858,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.91,
2085
+ "grad_norm": 0.5436100119596193,
2086
+ "learning_rate": 1.8132820493559521e-06,
2087
+ "loss": 1.1201,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.92,
2092
+ "grad_norm": 0.5015550141769547,
2093
+ "learning_rate": 1.6821966482872264e-06,
2094
+ "loss": 1.1797,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.92,
2099
+ "grad_norm": 0.5119620808666944,
2100
+ "learning_rate": 1.5559478899485447e-06,
2101
+ "loss": 1.1493,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.92,
2106
+ "grad_norm": 0.4977128949907143,
2107
+ "learning_rate": 1.434548411920622e-06,
2108
+ "loss": 1.1821,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.93,
2113
+ "grad_norm": 0.509981327731476,
2114
+ "learning_rate": 1.3180103663681165e-06,
2115
+ "loss": 1.1377,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.93,
2120
+ "grad_norm": 0.5029662223988268,
2121
+ "learning_rate": 1.206345418823235e-06,
2122
+ "loss": 1.1526,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.93,
2127
+ "grad_norm": 0.5519080967379805,
2128
+ "learning_rate": 1.099564747017967e-06,
2129
+ "loss": 1.1282,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.94,
2134
+ "grad_norm": 0.5223711089586693,
2135
+ "learning_rate": 9.976790397652315e-07,
2136
+ "loss": 1.0811,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.94,
2141
+ "grad_norm": 0.47043707607640073,
2142
+ "learning_rate": 9.006984958888742e-07,
2143
+ "loss": 1.1685,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.94,
2148
+ "grad_norm": 0.5254608837175258,
2149
+ "learning_rate": 8.086328232027873e-07,
2150
+ "loss": 1.0779,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.95,
2155
+ "grad_norm": 0.5081931596861774,
2156
+ "learning_rate": 7.214912375391291e-07,
2157
+ "loss": 1.1371,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.95,
2162
+ "grad_norm": 0.4922428385525549,
2163
+ "learning_rate": 6.392824618258519e-07,
2164
+ "loss": 1.2107,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.95,
2169
+ "grad_norm": 0.5274751815037492,
2170
+ "learning_rate": 5.620147252134889e-07,
2171
+ "loss": 1.1548,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.95,
2176
+ "grad_norm": 0.4984402486182386,
2177
+ "learning_rate": 4.896957622514298e-07,
2178
+ "loss": 1.1189,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.96,
2183
+ "grad_norm": 0.503914938251447,
2184
+ "learning_rate": 4.2233281211368493e-07,
2185
+ "loss": 1.1362,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.96,
2190
+ "grad_norm": 0.5313082041540377,
2191
+ "learning_rate": 3.599326178742535e-07,
2192
+ "loss": 1.2146,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.96,
2197
+ "grad_norm": 0.5301442913189116,
2198
+ "learning_rate": 3.025014258321135e-07,
2199
+ "loss": 1.1699,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.97,
2204
+ "grad_norm": 0.5176192540816547,
2205
+ "learning_rate": 2.500449848859776e-07,
2206
+ "loss": 1.2048,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.97,
2211
+ "grad_norm": 0.5034214543341652,
2212
+ "learning_rate": 2.0256854595881447e-07,
2213
+ "loss": 1.1338,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.97,
2218
+ "grad_norm": 0.4795708437379455,
2219
+ "learning_rate": 1.6007686147225254e-07,
2220
+ "loss": 1.1533,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.98,
2225
+ "grad_norm": 0.5053834258977199,
2226
+ "learning_rate": 1.2257418487082727e-07,
2227
+ "loss": 1.1648,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.98,
2232
+ "grad_norm": 0.5276919175530018,
2233
+ "learning_rate": 9.006427019622176e-08,
2234
+ "loss": 1.2034,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.98,
2239
+ "grad_norm": 0.5495649945557277,
2240
+ "learning_rate": 6.255037171150612e-08,
2241
+ "loss": 1.1985,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.99,
2246
+ "grad_norm": 0.4946180370647359,
2247
+ "learning_rate": 4.0035243575342605e-08,
2248
+ "loss": 1.1738,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.99,
2253
+ "grad_norm": 0.47883695876558374,
2254
+ "learning_rate": 2.2521139566328285e-08,
2255
+ "loss": 1.1804,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.99,
2260
+ "grad_norm": 0.5584783758937163,
2261
+ "learning_rate": 1.0009812857370016e-08,
2262
+ "loss": 1.1968,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.99,
2267
+ "grad_norm": 0.4815115437532202,
2268
+ "learning_rate": 2.502515840197006e-09,
2269
+ "loss": 1.1697,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 1.0,
2274
+ "grad_norm": 0.5515369695100554,
2275
+ "learning_rate": 0.0,
2276
+ "loss": 1.1912,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 1.0,
2281
+ "step": 324,
2282
+ "total_flos": 2.9498071531598643e+18,
2283
+ "train_loss": 1.2066333912037037,
2284
+ "train_runtime": 17698.3629,
2285
+ "train_samples_per_second": 4.697,
2286
+ "train_steps_per_second": 0.018
2287
+ }
2288
+ ],
2289
+ "logging_steps": 1.0,
2290
+ "max_steps": 324,
2291
+ "num_input_tokens_seen": 0,
2292
+ "num_train_epochs": 1,
2293
+ "save_steps": 20,
2294
+ "total_flos": 2.9498071531598643e+18,
2295
+ "train_batch_size": 16,
2296
+ "trial_name": null,
2297
+ "trial_params": null
2298
+ }