--- license: cc-by-nc-nd-4.0 pipeline_tag: object-detection tags: - yolo11 - ultralytics - yolo - object-detection - pytorch - cs2 - Counter Strike --- Counter Strike 2 players detector ## Supported Labels ``` [ 'c', 'ch', 't', 'th' ] ``` ## All models in this series - [yolo11n_cs2](https://huggingface.co/Vombit/yolo11n_cs2) (~6mb) - [yolo11s_cs2](https://huggingface.co/Vombit/yolo11s_cs2) (~18mb) - [yolo11m_cs2](https://huggingface.co/Vombit/yolo11m_cs2) (~39mb) - [yolo11l_cs2](https://huggingface.co/Vombit/yolo11l_cs2) (~49mb) - [yolo11x_cs2](https://huggingface.co/Vombit/yolo11x_cs2) (~109mb) ## How to use ```python # load Yolo from ultralytics import YOLO # Load a pretrained YOLO model model = YOLO(r'weights\yolo**_cs2.pt') # Run inference on 'image.png' with arguments model.predict( 'image.png', save=True, device=0 ) ``` ## Predict info Ultralytics 8.3.68 🚀 Python-3.11.0 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce RTX 4060, 8187MiB) - yolo11n_cs2_fp16.engine (384x640 5 ts, 5 ths, 20.2ms) - yolo11n_cs2.engine (384x640 5 ts, 5 ths, 3.3ms) - yolo11n_cs2_fp16.onnx (640x640 5 ts, 5 ths, 7.8ms) - yolo11n_cs2.onnx (384x640 5 ts, 5 ths, 172.7ms) - yolo11n_cs2.pt (384x640 5 ts, 5 ths, 52.1ms) ## Dataset info Data from over 127 games, where the footage has been tagged in detail. ![image/jpg](https://huggingface.co/Vombit/yolo11n_cs2/resolve/main/labels.jpg) ![image/jpg](https://huggingface.co/Vombit/yolo11n_cs2/resolve/main/labels_correlogram.jpg) ## Train info The training took place over 150 epochs. ![image/png](https://huggingface.co/Vombit/yolo11n_cs2/resolve/main/results.png) You can also support me with a cup of coffee: [donate](http://185.105.118.103/donation)