--- library_name: transformers license: apache-2.0 base_model: Salama1429/KalemaTech-Arabic-STT-ASR-based-on-Whisper-Small tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-smal-ar-testing-kale results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: None args: default metrics: - name: Wer type: wer value: 307.8198198198198 --- # whisper-smal-ar-testing-kale This model is a fine-tuned version of [Salama1429/KalemaTech-Arabic-STT-ASR-based-on-Whisper-Small](https://huggingface.co/Salama1429/KalemaTech-Arabic-STT-ASR-based-on-Whisper-Small) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.6230 - Wer: 307.8198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.6566 | 0.0032 | 2 | 2.6230 | 307.8198 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1