a-r-r-o-w HF staff commited on
Commit
e2aea09
·
verified ·
1 Parent(s): 0324b31

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -2
README.md CHANGED
@@ -53,13 +53,13 @@ This repo contains our I2V-14B model, which is capable of generating 480P videos
53
  - [x] Multi-GPU Inference code of the 14B and 1.3B models
54
  - [x] Checkpoints of the 14B and 1.3B models
55
  - [x] Gradio demo
56
- - [ ] Diffusers integration
57
  - [ ] ComfyUI integration
58
  - Wan2.1 Image-to-Video
59
  - [x] Multi-GPU Inference code of the 14B model
60
  - [x] Checkpoints of the 14B model
61
  - [x] Gradio demo
62
- - [ ] Diffusers integration
63
  - [ ] ComfyUI integration
64
 
65
 
@@ -151,6 +151,33 @@ pip install "xfuser>=0.4.1"
151
  torchrun --nproc_per_node=8 generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
152
  ```
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  ##### (2) Using Prompt Extention
155
 
156
  Run with local prompt extention using `Qwen/Qwen2.5-VL-7B-Instruct`:
 
53
  - [x] Multi-GPU Inference code of the 14B and 1.3B models
54
  - [x] Checkpoints of the 14B and 1.3B models
55
  - [x] Gradio demo
56
+ - [x] Diffusers integration
57
  - [ ] ComfyUI integration
58
  - Wan2.1 Image-to-Video
59
  - [x] Multi-GPU Inference code of the 14B model
60
  - [x] Checkpoints of the 14B model
61
  - [x] Gradio demo
62
+ - [x] Diffusers integration
63
  - [ ] ComfyUI integration
64
 
65
 
 
151
  torchrun --nproc_per_node=8 generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
152
  ```
153
 
154
+ Wan can also be run directly using 🤗 Diffusers!
155
+
156
+ ```python
157
+ import torch
158
+ from diffusers import AutoencoderKLWan, WanPipeline
159
+ from diffusers.utils import export_to_video
160
+
161
+ # Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
162
+ model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
163
+ vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
164
+ pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
165
+ pipe.to("cuda")
166
+
167
+ prompt = "A cat walks on the grass, realistic"
168
+ negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
169
+
170
+ output = pipe(
171
+ prompt=prompt,
172
+ negative_prompt=negative_prompt,
173
+ height=480,
174
+ width=832,
175
+ num_frames=81,
176
+ guidance_scale=5.0
177
+ ).frames[0]
178
+ export_to_video(output, "output.mp4", fps=15)
179
+ ```
180
+
181
  ##### (2) Using Prompt Extention
182
 
183
  Run with local prompt extention using `Qwen/Qwen2.5-VL-7B-Instruct`: