File size: 35,709 Bytes
904ef7d dc7086b 904ef7d dc7086b 904ef7d dc7086b 904ef7d dc7086b 904ef7d dc7086b 904ef7d 3de5f93 904ef7d 3de5f93 904ef7d 30e1aa8 904ef7d 3de5f93 904ef7d 3de5f93 904ef7d 3de5f93 904ef7d 3de5f93 904ef7d f6e1b58 904ef7d f6e1b58 904ef7d dc7086b 904ef7d f6e1b58 904ef7d f6e1b58 904ef7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 |
import os
import glob
import tqdm
import math
import imageio
import random
import warnings
import tensorboardX
import numpy as np
import pandas as pd
import time
from datetime import datetime
import cv2
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
import trimesh
from rich.console import Console
from torch_ema import ExponentialMovingAverage
from packaging import version as pver
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def safe_normalize(x, eps=1e-20):
return x / torch.sqrt(torch.clamp(torch.sum(x * x, -1, keepdim=True), min=eps))
@torch.cuda.amp.autocast(enabled=False)
def get_rays(poses, intrinsics, H, W, N=-1, error_map=None):
''' get rays
Args:
poses: [B, 4, 4], cam2world
intrinsics: [4]
H, W, N: int
error_map: [B, 128 * 128], sample probability based on training error
Returns:
rays_o, rays_d: [B, N, 3]
inds: [B, N]
'''
device = poses.device
B = poses.shape[0]
fx, fy, cx, cy = intrinsics
i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device))
i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5
j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5
results = {}
if N > 0:
N = min(N, H*W)
if error_map is None:
inds = torch.randint(0, H*W, size=[N], device=device) # may duplicate
inds = inds.expand([B, N])
else:
# weighted sample on a low-reso grid
inds_coarse = torch.multinomial(error_map.to(device), N, replacement=False) # [B, N], but in [0, 128*128)
# map to the original resolution with random perturb.
inds_x, inds_y = inds_coarse // 128, inds_coarse % 128 # `//` will throw a warning in torch 1.10... anyway.
sx, sy = H / 128, W / 128
inds_x = (inds_x * sx + torch.rand(B, N, device=device) * sx).long().clamp(max=H - 1)
inds_y = (inds_y * sy + torch.rand(B, N, device=device) * sy).long().clamp(max=W - 1)
inds = inds_x * W + inds_y
results['inds_coarse'] = inds_coarse # need this when updating error_map
i = torch.gather(i, -1, inds)
j = torch.gather(j, -1, inds)
results['inds'] = inds
else:
inds = torch.arange(H*W, device=device).expand([B, H*W])
zs = torch.ones_like(i)
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
directions = torch.stack((xs, ys, zs), dim=-1)
directions = safe_normalize(directions)
rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3)
rays_o = poses[..., :3, 3] # [B, 3]
rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3]
results['rays_o'] = rays_o
results['rays_d'] = rays_d
return results
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = True
def torch_vis_2d(x, renormalize=False):
# x: [3, H, W] or [1, H, W] or [H, W]
import matplotlib.pyplot as plt
import numpy as np
import torch
if isinstance(x, torch.Tensor):
if len(x.shape) == 3:
x = x.permute(1,2,0).squeeze()
x = x.detach().cpu().numpy()
print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}')
x = x.astype(np.float32)
# renormalize
if renormalize:
x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8)
plt.imshow(x)
plt.show()
@torch.jit.script
def linear_to_srgb(x):
return torch.where(x < 0.0031308, 12.92 * x, 1.055 * x ** 0.41666 - 0.055)
@torch.jit.script
def srgb_to_linear(x):
return torch.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
class Trainer(object):
def __init__(self,
name, # name of this experiment
opt, # extra conf
model, # network
guidance, # guidance network
criterion=None, # loss function, if None, assume inline implementation in train_step
optimizer=None, # optimizer
ema_decay=None, # if use EMA, set the decay
lr_scheduler=None, # scheduler
metrics=[], # metrics for evaluation, if None, use val_loss to measure performance, else use the first metric.
local_rank=0, # which GPU am I
world_size=1, # total num of GPUs
device=None, # device to use, usually setting to None is OK. (auto choose device)
mute=False, # whether to mute all print
fp16=False, # amp optimize level
eval_interval=1, # eval once every $ epoch
max_keep_ckpt=2, # max num of saved ckpts in disk
workspace='workspace', # workspace to save logs & ckpts
best_mode='min', # the smaller/larger result, the better
use_loss_as_metric=True, # use loss as the first metric
report_metric_at_train=False, # also report metrics at training
use_checkpoint="latest", # which ckpt to use at init time
use_tensorboardX=True, # whether to use tensorboard for logging
scheduler_update_every_step=False, # whether to call scheduler.step() after every train step
):
self.name = name
self.opt = opt
self.mute = mute
self.metrics = metrics
self.local_rank = local_rank
self.world_size = world_size
self.workspace = workspace
self.ema_decay = ema_decay
self.fp16 = fp16
self.best_mode = best_mode
self.use_loss_as_metric = use_loss_as_metric
self.report_metric_at_train = report_metric_at_train
self.max_keep_ckpt = max_keep_ckpt
self.eval_interval = eval_interval
self.use_checkpoint = use_checkpoint
self.use_tensorboardX = use_tensorboardX
self.time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S")
self.scheduler_update_every_step = scheduler_update_every_step
self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
self.console = Console()
model.to(self.device)
if self.world_size > 1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
self.model = model
# guide model
self.guidance = guidance
# text prompt
if self.guidance is not None:
for p in self.guidance.parameters():
p.requires_grad = False
self.prepare_text_embeddings()
else:
self.text_z = None
if isinstance(criterion, nn.Module):
criterion.to(self.device)
self.criterion = criterion
if optimizer is None:
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001, weight_decay=5e-4) # naive adam
else:
self.optimizer = optimizer(self.model)
if lr_scheduler is None:
self.lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: 1) # fake scheduler
else:
self.lr_scheduler = lr_scheduler(self.optimizer)
if ema_decay is not None:
self.ema = ExponentialMovingAverage(self.model.parameters(), decay=ema_decay)
else:
self.ema = None
self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16)
# variable init
self.epoch = 0
self.global_step = 0
self.local_step = 0
self.stats = {
"loss": [],
"valid_loss": [],
"results": [], # metrics[0], or valid_loss
"checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
"best_result": None,
}
# auto fix
if len(metrics) == 0 or self.use_loss_as_metric:
self.best_mode = 'min'
# workspace prepare
self.log_ptr = None
if self.workspace is not None:
os.makedirs(self.workspace, exist_ok=True)
self.log_path = os.path.join(workspace, f"log_{self.name}.txt")
self.log_ptr = open(self.log_path, "a+")
self.ckpt_path = os.path.join(self.workspace, 'checkpoints')
self.best_path = f"{self.ckpt_path}/{self.name}.pth"
os.makedirs(self.ckpt_path, exist_ok=True)
self.log(f'[INFO] Trainer: {self.name} | {self.time_stamp} | {self.device} | {"fp16" if self.fp16 else "fp32"} | {self.workspace}')
self.log(f'[INFO] #parameters: {sum([p.numel() for p in model.parameters() if p.requires_grad])}')
if self.workspace is not None:
if self.use_checkpoint == "scratch":
self.log("[INFO] Training from scratch ...")
elif self.use_checkpoint == "latest":
self.log("[INFO] Loading latest checkpoint ...")
self.load_checkpoint()
elif self.use_checkpoint == "latest_model":
self.log("[INFO] Loading latest checkpoint (model only)...")
self.load_checkpoint(model_only=True)
elif self.use_checkpoint == "best":
if os.path.exists(self.best_path):
self.log("[INFO] Loading best checkpoint ...")
self.load_checkpoint(self.best_path)
else:
self.log(f"[INFO] {self.best_path} not found, loading latest ...")
self.load_checkpoint()
else: # path to ckpt
self.log(f"[INFO] Loading {self.use_checkpoint} ...")
self.load_checkpoint(self.use_checkpoint)
# calculate the text embs.
def prepare_text_embeddings(self):
if self.opt.text is None:
self.log(f"[WARN] text prompt is not provided.")
self.text_z = None
return
if not self.opt.dir_text:
self.text_z = self.guidance.get_text_embeds([self.opt.text])
else:
self.text_z = []
for d in ['front', 'side', 'back', 'side', 'overhead', 'bottom']:
text = f"{self.opt.text}, {d} view"
text_z = self.guidance.get_text_embeds([text])
self.text_z.append(text_z)
def __del__(self):
if self.log_ptr:
self.log_ptr.close()
def log(self, *args, **kwargs):
if self.local_rank == 0:
if not self.mute:
#print(*args)
self.console.print(*args, **kwargs)
if self.log_ptr:
print(*args, file=self.log_ptr)
self.log_ptr.flush() # write immediately to file
### ------------------------------
def train_step(self, data):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
B, N = rays_o.shape[:2]
H, W = data['H'], data['W']
# TODO: shading is not working right now...
if self.global_step < self.opt.albedo_iters:
shading = 'albedo'
ambient_ratio = 1.0
else:
rand = random.random()
if rand > 0.8:
shading = 'albedo'
ambient_ratio = 1.0
# elif rand > 0.4:
# shading = 'textureless'
# ambient_ratio = 0.1
else:
shading = 'lambertian'
ambient_ratio = 0.1
# _t = time.time()
bg_color = torch.rand((B * N, 3), device=rays_o.device) # pixel-wise random
outputs = self.model.render(rays_o, rays_d, staged=False, perturb=True, bg_color=bg_color, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, **vars(self.opt))
pred_rgb = outputs['image'].reshape(B, H, W, 3).permute(0, 3, 1, 2).contiguous() # [1, 3, H, W]
# torch.cuda.synchronize(); print(f'[TIME] nerf render {time.time() - _t:.4f}s')
# print(shading)
# torch_vis_2d(pred_rgb[0])
# text embeddings
if self.opt.dir_text:
dirs = data['dir'] # [B,]
text_z = self.text_z[dirs]
else:
text_z = self.text_z
# encode pred_rgb to latents
# _t = time.time()
loss = self.guidance.train_step(text_z, pred_rgb)
# torch.cuda.synchronize(); print(f'[TIME] total guiding {time.time() - _t:.4f}s')
# occupancy loss
pred_ws = outputs['weights_sum'].reshape(B, 1, H, W)
if self.opt.lambda_opacity > 0:
loss_opacity = (pred_ws ** 2).mean()
loss = loss + self.opt.lambda_opacity * loss_opacity
if self.opt.lambda_entropy > 0:
alphas = (pred_ws).clamp(1e-5, 1 - 1e-5)
# alphas = alphas ** 2 # skewed entropy, favors 0 over 1
loss_entropy = (- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)).mean()
loss = loss + self.opt.lambda_entropy * loss_entropy
if self.opt.lambda_orient > 0 and 'loss_orient' in outputs:
loss_orient = outputs['loss_orient']
loss = loss + self.opt.lambda_orient * loss_orient
return pred_rgb, pred_ws, loss
def eval_step(self, data):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
B, N = rays_o.shape[:2]
H, W = data['H'], data['W']
shading = data['shading'] if 'shading' in data else 'albedo'
ambient_ratio = data['ambient_ratio'] if 'ambient_ratio' in data else 1.0
light_d = data['light_d'] if 'light_d' in data else None
outputs = self.model.render(rays_o, rays_d, staged=True, perturb=False, bg_color=None, light_d=light_d, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, **vars(self.opt))
pred_rgb = outputs['image'].reshape(B, H, W, 3)
pred_depth = outputs['depth'].reshape(B, H, W)
pred_ws = outputs['weights_sum'].reshape(B, H, W)
# mask_ws = outputs['mask'].reshape(B, H, W) # near < far
# loss_ws = pred_ws.sum() / mask_ws.sum()
# loss_ws = pred_ws.mean()
alphas = (pred_ws).clamp(1e-5, 1 - 1e-5)
# alphas = alphas ** 2 # skewed entropy, favors 0 over 1
loss_entropy = (- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)).mean()
loss = self.opt.lambda_entropy * loss_entropy
return pred_rgb, pred_depth, loss
def test_step(self, data, bg_color=None, perturb=False):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
B, N = rays_o.shape[:2]
H, W = data['H'], data['W']
if bg_color is not None:
bg_color = bg_color.to(rays_o.device)
else:
bg_color = torch.ones(3, device=rays_o.device) # [3]
shading = data['shading'] if 'shading' in data else 'albedo'
ambient_ratio = data['ambient_ratio'] if 'ambient_ratio' in data else 1.0
light_d = data['light_d'] if 'light_d' in data else None
outputs = self.model.render(rays_o, rays_d, staged=True, perturb=perturb, light_d=light_d, ambient_ratio=ambient_ratio, shading=shading, force_all_rays=True, bg_color=bg_color, **vars(self.opt))
pred_rgb = outputs['image'].reshape(B, H, W, 3)
pred_depth = outputs['depth'].reshape(B, H, W)
return pred_rgb, pred_depth
def save_mesh(self, save_path=None, resolution=128):
if save_path is None:
save_path = os.path.join(self.workspace, 'mesh')
self.log(f"==> Saving mesh to {save_path}")
os.makedirs(save_path, exist_ok=True)
self.model.export_mesh(save_path, resolution=resolution)
self.log(f"==> Finished saving mesh.")
### ------------------------------
def train(self, train_loader, valid_loader, max_epochs):
assert self.text_z is not None, 'Training must provide a text prompt!'
if self.use_tensorboardX and self.local_rank == 0:
self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))
start_t = time.time()
for epoch in range(self.epoch + 1, max_epochs + 1):
self.epoch = epoch
self.train_one_epoch(train_loader)
if self.workspace is not None and self.local_rank == 0:
self.save_checkpoint(full=True, best=False)
if self.epoch % self.eval_interval == 0:
self.evaluate_one_epoch(valid_loader)
self.save_checkpoint(full=False, best=True)
end_t = time.time()
self.log(f"[INFO] training takes {(end_t - start_t)/ 60:.4f} minutes.")
if self.use_tensorboardX and self.local_rank == 0:
self.writer.close()
def evaluate(self, loader, name=None):
self.use_tensorboardX, use_tensorboardX = False, self.use_tensorboardX
self.evaluate_one_epoch(loader, name)
self.use_tensorboardX = use_tensorboardX
def test(self, loader, save_path=None, name=None, write_video=True):
if save_path is None:
save_path = os.path.join(self.workspace, 'results')
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
os.makedirs(save_path, exist_ok=True)
self.log(f"==> Start Test, save results to {save_path}")
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
self.model.eval()
if write_video:
all_preds = []
all_preds_depth = []
with torch.no_grad():
for i, data in enumerate(loader):
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, preds_depth = self.test_step(data)
pred = preds[0].detach().cpu().numpy()
pred = (pred * 255).astype(np.uint8)
pred_depth = preds_depth[0].detach().cpu().numpy()
pred_depth = (pred_depth * 255).astype(np.uint8)
if write_video:
all_preds.append(pred)
all_preds_depth.append(pred_depth)
else:
cv2.imwrite(os.path.join(save_path, f'{name}_{i:04d}_rgb.png'), cv2.cvtColor(pred, cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(save_path, f'{name}_{i:04d}_depth.png'), pred_depth)
pbar.update(loader.batch_size)
if write_video:
all_preds = np.stack(all_preds, axis=0)
all_preds_depth = np.stack(all_preds_depth, axis=0)
imageio.mimwrite(os.path.join(save_path, f'{name}_rgb.mp4'), all_preds, fps=25, quality=8, macro_block_size=1)
imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1)
self.log(f"==> Finished Test.")
# [GUI] train text step.
def train_gui(self, train_loader, step=16):
self.model.train()
total_loss = torch.tensor([0], dtype=torch.float32, device=self.device)
loader = iter(train_loader)
for _ in range(step):
# mimic an infinite loop dataloader (in case the total dataset is smaller than step)
try:
data = next(loader)
except StopIteration:
loader = iter(train_loader)
data = next(loader)
# update grid every 16 steps
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
with torch.cuda.amp.autocast(enabled=self.fp16):
self.model.update_extra_state()
self.global_step += 1
self.optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=self.fp16):
pred_rgbs, pred_ws, loss = self.train_step(data)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.scheduler_update_every_step:
self.lr_scheduler.step()
total_loss += loss.detach()
if self.ema is not None:
self.ema.update()
average_loss = total_loss.item() / step
if not self.scheduler_update_every_step:
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step(average_loss)
else:
self.lr_scheduler.step()
outputs = {
'loss': average_loss,
'lr': self.optimizer.param_groups[0]['lr'],
}
return outputs
# [GUI] test on a single image
def test_gui(self, pose, intrinsics, W, H, bg_color=None, spp=1, downscale=1, light_d=None, ambient_ratio=1.0, shading='albedo'):
# render resolution (may need downscale to for better frame rate)
rH = int(H * downscale)
rW = int(W * downscale)
intrinsics = intrinsics * downscale
pose = torch.from_numpy(pose).unsqueeze(0).to(self.device)
rays = get_rays(pose, intrinsics, rH, rW, -1)
# from degree theta/phi to 3D normalized vec
light_d = np.deg2rad(light_d)
light_d = np.array([
np.sin(light_d[0]) * np.sin(light_d[1]),
np.cos(light_d[0]),
np.sin(light_d[0]) * np.cos(light_d[1]),
], dtype=np.float32)
light_d = torch.from_numpy(light_d).to(self.device)
data = {
'rays_o': rays['rays_o'],
'rays_d': rays['rays_d'],
'H': rH,
'W': rW,
'light_d': light_d,
'ambient_ratio': ambient_ratio,
'shading': shading,
}
self.model.eval()
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=self.fp16):
# here spp is used as perturb random seed!
preds, preds_depth = self.test_step(data, bg_color=bg_color, perturb=spp)
if self.ema is not None:
self.ema.restore()
# interpolation to the original resolution
if downscale != 1:
# have to permute twice with torch...
preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='nearest').permute(0, 2, 3, 1).contiguous()
preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1)
outputs = {
'image': preds[0].detach().cpu().numpy(),
'depth': preds_depth[0].detach().cpu().numpy(),
}
return outputs
def train_one_epoch(self, loader):
self.log(f"==> Start Training {self.workspace} Epoch {self.epoch}, lr={self.optimizer.param_groups[0]['lr']:.6f} ...")
total_loss = 0
if self.local_rank == 0 and self.report_metric_at_train:
for metric in self.metrics:
metric.clear()
self.model.train()
# distributedSampler: must call set_epoch() to shuffle indices across multiple epochs
# ref: https://pytorch.org/docs/stable/data.html
if self.world_size > 1:
loader.sampler.set_epoch(self.epoch)
if self.local_rank == 0:
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
self.local_step = 0
for data in loader:
# update grid every 16 steps
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
with torch.cuda.amp.autocast(enabled=self.fp16):
self.model.update_extra_state()
self.local_step += 1
self.global_step += 1
self.optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=self.fp16):
pred_rgbs, pred_ws, loss = self.train_step(data)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.scheduler_update_every_step:
self.lr_scheduler.step()
loss_val = loss.item()
total_loss += loss_val
if self.local_rank == 0:
# if self.report_metric_at_train:
# for metric in self.metrics:
# metric.update(preds, truths)
if self.use_tensorboardX:
self.writer.add_scalar("train/loss", loss_val, self.global_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]['lr'], self.global_step)
if self.scheduler_update_every_step:
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f}), lr={self.optimizer.param_groups[0]['lr']:.6f}")
else:
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
pbar.update(loader.batch_size)
if self.ema is not None:
self.ema.update()
average_loss = total_loss / self.local_step
self.stats["loss"].append(average_loss)
if self.local_rank == 0:
pbar.close()
if self.report_metric_at_train:
for metric in self.metrics:
self.log(metric.report(), style="red")
if self.use_tensorboardX:
metric.write(self.writer, self.epoch, prefix="train")
metric.clear()
if not self.scheduler_update_every_step:
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step(average_loss)
else:
self.lr_scheduler.step()
self.log(f"==> Finished Epoch {self.epoch}.")
def evaluate_one_epoch(self, loader, name=None):
self.log(f"++> Evaluate {self.workspace} at epoch {self.epoch} ...")
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
total_loss = 0
if self.local_rank == 0:
for metric in self.metrics:
metric.clear()
self.model.eval()
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
if self.local_rank == 0:
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
with torch.no_grad():
self.local_step = 0
for data in loader:
self.local_step += 1
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, preds_depth, loss = self.eval_step(data)
# all_gather/reduce the statistics (NCCL only support all_*)
if self.world_size > 1:
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
loss = loss / self.world_size
preds_list = [torch.zeros_like(preds).to(self.device) for _ in range(self.world_size)] # [[B, ...], [B, ...], ...]
dist.all_gather(preds_list, preds)
preds = torch.cat(preds_list, dim=0)
preds_depth_list = [torch.zeros_like(preds_depth).to(self.device) for _ in range(self.world_size)] # [[B, ...], [B, ...], ...]
dist.all_gather(preds_depth_list, preds_depth)
preds_depth = torch.cat(preds_depth_list, dim=0)
loss_val = loss.item()
total_loss += loss_val
# only rank = 0 will perform evaluation.
if self.local_rank == 0:
# save image
save_path = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_rgb.png')
save_path_depth = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_depth.png')
#self.log(f"==> Saving validation image to {save_path}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
pred = preds[0].detach().cpu().numpy()
pred = (pred * 255).astype(np.uint8)
pred_depth = preds_depth[0].detach().cpu().numpy()
pred_depth = (pred_depth * 255).astype(np.uint8)
cv2.imwrite(save_path, cv2.cvtColor(pred, cv2.COLOR_RGB2BGR))
cv2.imwrite(save_path_depth, pred_depth)
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
pbar.update(loader.batch_size)
average_loss = total_loss / self.local_step
self.stats["valid_loss"].append(average_loss)
if self.local_rank == 0:
pbar.close()
if not self.use_loss_as_metric and len(self.metrics) > 0:
result = self.metrics[0].measure()
self.stats["results"].append(result if self.best_mode == 'min' else - result) # if max mode, use -result
else:
self.stats["results"].append(average_loss) # if no metric, choose best by min loss
for metric in self.metrics:
self.log(metric.report(), style="blue")
if self.use_tensorboardX:
metric.write(self.writer, self.epoch, prefix="evaluate")
metric.clear()
if self.ema is not None:
self.ema.restore()
self.log(f"++> Evaluate epoch {self.epoch} Finished.")
def save_checkpoint(self, name=None, full=False, best=False):
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
state = {
'epoch': self.epoch,
'global_step': self.global_step,
'stats': self.stats,
}
if self.model.cuda_ray:
state['mean_count'] = self.model.mean_count
state['mean_density'] = self.model.mean_density
if full:
state['optimizer'] = self.optimizer.state_dict()
state['lr_scheduler'] = self.lr_scheduler.state_dict()
state['scaler'] = self.scaler.state_dict()
if self.ema is not None:
state['ema'] = self.ema.state_dict()
if not best:
state['model'] = self.model.state_dict()
file_path = f"{name}.pth"
self.stats["checkpoints"].append(file_path)
if len(self.stats["checkpoints"]) > self.max_keep_ckpt:
old_ckpt = os.path.join(self.ckpt_path, self.stats["checkpoints"].pop(0))
if os.path.exists(old_ckpt):
os.remove(old_ckpt)
torch.save(state, os.path.join(self.ckpt_path, file_path))
else:
if len(self.stats["results"]) > 0:
if self.stats["best_result"] is None or self.stats["results"][-1] < self.stats["best_result"]:
self.log(f"[INFO] New best result: {self.stats['best_result']} --> {self.stats['results'][-1]}")
self.stats["best_result"] = self.stats["results"][-1]
# save ema results
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
state['model'] = self.model.state_dict()
if self.ema is not None:
self.ema.restore()
torch.save(state, self.best_path)
else:
self.log(f"[WARN] no evaluated results found, skip saving best checkpoint.")
def load_checkpoint(self, checkpoint=None, model_only=False):
if checkpoint is None:
checkpoint_list = sorted(glob.glob(f'{self.ckpt_path}/*.pth'))
if checkpoint_list:
checkpoint = checkpoint_list[-1]
self.log(f"[INFO] Latest checkpoint is {checkpoint}")
else:
self.log("[WARN] No checkpoint found, model randomly initialized.")
return
checkpoint_dict = torch.load(checkpoint, map_location=self.device)
if 'model' not in checkpoint_dict:
self.model.load_state_dict(checkpoint_dict)
self.log("[INFO] loaded model.")
return
missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
self.log("[INFO] loaded model.")
if len(missing_keys) > 0:
self.log(f"[WARN] missing keys: {missing_keys}")
if len(unexpected_keys) > 0:
self.log(f"[WARN] unexpected keys: {unexpected_keys}")
if self.ema is not None and 'ema' in checkpoint_dict:
try:
self.ema.load_state_dict(checkpoint_dict['ema'])
self.log("[INFO] loaded EMA.")
except:
self.log("[WARN] failed to loaded EMA.")
if self.model.cuda_ray:
if 'mean_count' in checkpoint_dict:
self.model.mean_count = checkpoint_dict['mean_count']
if 'mean_density' in checkpoint_dict:
self.model.mean_density = checkpoint_dict['mean_density']
if model_only:
return
self.stats = checkpoint_dict['stats']
self.epoch = checkpoint_dict['epoch']
self.global_step = checkpoint_dict['global_step']
self.log(f"[INFO] load at epoch {self.epoch}, global step {self.global_step}")
if self.optimizer and 'optimizer' in checkpoint_dict:
try:
self.optimizer.load_state_dict(checkpoint_dict['optimizer'])
self.log("[INFO] loaded optimizer.")
except:
self.log("[WARN] Failed to load optimizer.")
if self.lr_scheduler and 'lr_scheduler' in checkpoint_dict:
try:
self.lr_scheduler.load_state_dict(checkpoint_dict['lr_scheduler'])
self.log("[INFO] loaded scheduler.")
except:
self.log("[WARN] Failed to load scheduler.")
if self.scaler and 'scaler' in checkpoint_dict:
try:
self.scaler.load_state_dict(checkpoint_dict['scaler'])
self.log("[INFO] loaded scaler.")
except:
self.log("[WARN] Failed to load scaler.") |