remove old
Browse files- main_nerf.py +0 -146
main_nerf.py
DELETED
@@ -1,146 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import argparse
|
3 |
-
|
4 |
-
from nerf.provider import NeRFDataset
|
5 |
-
from nerf.utils import *
|
6 |
-
from optimizer import Shampoo
|
7 |
-
|
8 |
-
from nerf.gui import NeRFGUI
|
9 |
-
|
10 |
-
# torch.autograd.set_detect_anomaly(True)
|
11 |
-
|
12 |
-
if __name__ == '__main__':
|
13 |
-
|
14 |
-
parser = argparse.ArgumentParser()
|
15 |
-
parser.add_argument('--text', default=None, help="text prompt")
|
16 |
-
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --dir_text")
|
17 |
-
parser.add_argument('-O2', action='store_true', help="equals --fp16 --dir_text")
|
18 |
-
parser.add_argument('--test', action='store_true', help="test mode")
|
19 |
-
parser.add_argument('--workspace', type=str, default='workspace')
|
20 |
-
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
|
21 |
-
parser.add_argument('--seed', type=int, default=0)
|
22 |
-
|
23 |
-
### training options
|
24 |
-
parser.add_argument('--iters', type=int, default=15000, help="training iters")
|
25 |
-
parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate")
|
26 |
-
parser.add_argument('--ckpt', type=str, default='latest')
|
27 |
-
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
|
28 |
-
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
|
29 |
-
parser.add_argument('--num_steps', type=int, default=256, help="num steps sampled per ray (only valid when not using --cuda_ray)")
|
30 |
-
parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
|
31 |
-
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
|
32 |
-
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
|
33 |
-
parser.add_argument('--albedo_iters', type=int, default=15000, help="training iters that only use albedo shading")
|
34 |
-
# model options
|
35 |
-
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
|
36 |
-
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
|
37 |
-
# network backbone
|
38 |
-
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
|
39 |
-
parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, tcnn, vanilla]")
|
40 |
-
# rendering resolution in training
|
41 |
-
parser.add_argument('--w', type=int, default=128, help="render width for NeRF in training")
|
42 |
-
parser.add_argument('--h', type=int, default=128, help="render height for NeRF in training")
|
43 |
-
|
44 |
-
### dataset options
|
45 |
-
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
|
46 |
-
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
|
47 |
-
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
|
48 |
-
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
|
49 |
-
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range")
|
50 |
-
parser.add_argument('--dir_text', action='store_true', help="direction-encode the text prompt, by appending front/side/back/overhead view")
|
51 |
-
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
|
52 |
-
parser.add_argument('--angle_front', type=float, default=30, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
|
53 |
-
|
54 |
-
parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy")
|
55 |
-
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
|
56 |
-
|
57 |
-
### GUI options
|
58 |
-
parser.add_argument('--gui', action='store_true', help="start a GUI")
|
59 |
-
parser.add_argument('--W', type=int, default=800, help="GUI width")
|
60 |
-
parser.add_argument('--H', type=int, default=800, help="GUI height")
|
61 |
-
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
|
62 |
-
parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
|
63 |
-
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
|
64 |
-
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
|
65 |
-
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
|
66 |
-
|
67 |
-
opt = parser.parse_args()
|
68 |
-
|
69 |
-
if opt.O:
|
70 |
-
opt.fp16 = True
|
71 |
-
opt.cuda_ray = True
|
72 |
-
opt.dir_text = True
|
73 |
-
elif opt.O2:
|
74 |
-
opt.fp16 = True
|
75 |
-
opt.dir_text = True
|
76 |
-
|
77 |
-
if opt.backbone == 'vanilla':
|
78 |
-
from nerf.network import NeRFNetwork
|
79 |
-
elif opt.backbone == 'tcnn':
|
80 |
-
from nerf.network_tcnn import NeRFNetwork
|
81 |
-
elif opt.backbone == 'grid':
|
82 |
-
from nerf.network_grid import NeRFNetwork
|
83 |
-
else:
|
84 |
-
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
|
85 |
-
|
86 |
-
print(opt)
|
87 |
-
|
88 |
-
seed_everything(opt.seed)
|
89 |
-
|
90 |
-
model = NeRFNetwork(opt)
|
91 |
-
|
92 |
-
print(model)
|
93 |
-
|
94 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
95 |
-
|
96 |
-
if opt.test:
|
97 |
-
guidance = None # no need to load guidance model at test
|
98 |
-
|
99 |
-
trainer = Trainer('ngp', opt, model, guidance, device=device, workspace=opt.workspace, fp16=opt.fp16, use_checkpoint=opt.ckpt)
|
100 |
-
|
101 |
-
if opt.gui:
|
102 |
-
gui = NeRFGUI(opt, trainer)
|
103 |
-
gui.render()
|
104 |
-
|
105 |
-
else:
|
106 |
-
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
|
107 |
-
trainer.test(test_loader)
|
108 |
-
# trainer.save_mesh(resolution=256)
|
109 |
-
|
110 |
-
else:
|
111 |
-
|
112 |
-
if opt.guidance == 'stable-diffusion':
|
113 |
-
from nerf.sd import StableDiffusion
|
114 |
-
guidance = StableDiffusion(device)
|
115 |
-
elif opt.guidance == 'clip':
|
116 |
-
from nerf.clip import CLIP
|
117 |
-
guidance = CLIP(device)
|
118 |
-
else:
|
119 |
-
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
|
120 |
-
|
121 |
-
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
|
122 |
-
# optimizer = lambda model: Shampoo(model.get_params(opt.lr))
|
123 |
-
|
124 |
-
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
|
125 |
-
|
126 |
-
# decay to 0.01 * init_lr at last iter step
|
127 |
-
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.01 ** min(iter / opt.iters, 1))
|
128 |
-
|
129 |
-
trainer = Trainer('ngp', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=1)
|
130 |
-
|
131 |
-
if opt.gui:
|
132 |
-
trainer.train_loader = train_loader # attach dataloader to trainer
|
133 |
-
|
134 |
-
gui = NeRFGUI(opt, trainer)
|
135 |
-
gui.render()
|
136 |
-
|
137 |
-
else:
|
138 |
-
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
|
139 |
-
|
140 |
-
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
|
141 |
-
trainer.train(train_loader, valid_loader, max_epoch)
|
142 |
-
|
143 |
-
# also test
|
144 |
-
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
|
145 |
-
trainer.test(test_loader)
|
146 |
-
trainer.save_mesh(resolution=256)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|