File size: 1,479 Bytes
8d9cf37
72147ad
 
 
 
 
 
 
 
 
 
 
 
8d9cf37
 
72147ad
 
8d9cf37
72147ad
8d9cf37
72147ad
 
3e31092
8d9cf37
72147ad
8d9cf37
72147ad
8d9cf37
72147ad
8d9cf37
72147ad
8d9cf37
72147ad
8d9cf37
72147ad
8d9cf37
72147ad
8d9cf37
72147ad
8d9cf37
72147ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9cf37
72147ad
8d9cf37
 
 
72147ad
8d9cf37
72147ad
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: NousResearch/Nous-Hermes-llama-2-7b
model-index:
- name: heading_investigation_e3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# heading_investigation_e3

This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2621

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- PEFT 0.7.1
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.16.1
- Tokenizers 0.15.1