--- language: - en license: other tags: - axolotl - generated_from_trainer - Mistral - instruct - finetune - chatml - gpt4 - synthetic data - science - physics - chemistry - biology - math base_model: mistralai/Mistral-7B-v0.1 datasets: - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - camel-ai/math - metaeval/reclor - openbookqa - mandyyyyii/scibench - derek-thomas/ScienceQA - TIGER-Lab/ScienceEval - jondurbin/airoboros-3.2 - LDJnr/Capybara - Cot-Alpaca-GPT4-From-OpenHermes-2.5 - STEM-AI-mtl/Electrical-engineering - knowrohit07/saraswati-stem - sablo/oasst2_curated - glaiveai/glaive-code-assistant - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - bigbio/med_qa - meta-math/MetaMathQA-40K - openbookqa - piqa - metaeval/reclor - derek-thomas/ScienceQA - scibench - sciq - Open-Orca/SlimOrca - migtissera/Synthia-v1.3 - TIGER-Lab/ScienceEval model-index: - name: Einstein-v4-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 64.68 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.31 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.15 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 57.62 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 47.08 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 14.3 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 1.74 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 4.25 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 19.02 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 13.99 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B name: Open LLM Leaderboard --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/U0zyXVGj-O8a7KP3BvPue.png) # 🔬 Einstein-v4-7B This model is a full fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on diverse datasets. This model is finetuned using `7xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). This model's training was sponsored by [sablo.ai](https://sablo.ai).
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: data/merged_all.json ds_type: json type: alpaca conversation: chatml - path: data/capybara_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/synthia-v1.3_sharegpt_12500.json ds_type: json type: sharegpt conversation: chatml - path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/slimorca_dedup_filtered_95k_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json ds_type: json type: sharegpt conversation: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.005 output_dir: ./Einstein-v4-model sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: Einstein wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: Weyaxi/Einstein-v4-7B save_safetensors: true gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1.5 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 2 # changed eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 4 debug: deepspeed: zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "<|im_end|>" unk_token: "" tokens: - "<|im_start|>" resume_from_checkpoint: Einstein-v4-model/checkpoint-521 ```

# 💬 Prompt Template You can use this prompt template while using the model: ### ChatML ``` <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> ``` This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are helpful AI asistant."}, {"role": "user", "content": "Hello!"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` # 🔄 Quantizationed versions Quantizationed versions of this model is available. ## GGUF [@LoneStriker](https://huggingface.co/LoneStriker) - https://huggingface.co/LoneStriker/Einstein-v4-7B-GGUF ## AWQ [@solidrust](https://huggingface.co/solidrust) - https://huggingface.co/solidrust/Einstein-v4-7B-AWQ ## Exl2 [@bartowski](https://hf.co/bartowski): - https://huggingface.co/bartowski/Einstein-v4-7B-exl2 # 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v4-7B) | Metric |Value| |---------------------------------|----:| |Avg. |66.62| |AI2 Reasoning Challenge (25-Shot)|64.68| |HellaSwag (10-Shot) |83.75| |MMLU (5-Shot) |62.31| |TruthfulQA (0-shot) |55.15| |Winogrande (5-shot) |76.24| |GSM8k (5-shot) |57.62| # 🎯 [Open LLM Leaderboard v2 Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v4-7B) | Metric |Value| |-------------------|----:| |Avg. |16.73| |IFEval (0-Shot) |47.08| |BBH (3-Shot) |14.30| |MATH Lvl 5 (4-Shot)| 1.74| |GPQA (0-shot) | 4.25| |MuSR (0-shot) |19.02| |MMLU-PRO (5-shot) |13.99| # 📚 Some resources, discussions and reviews aboout this model #### 🐦 Announcement tweet: https://twitter.com/Weyaxi/status/1765851433448944125 #### 🔍 Reddit post in r/LocalLLaMA: - https://www.reddit.com/r/LocalLLaMA/comments/1b9gmvl/meet_einsteinv47b_mistralbased_sft_model_using/ #### ▶️ Youtube Videos - https://www.youtube.com/watch?v=-3YWgHJIORE&t=18s - https://www.youtube.com/watch?v=Xo2ySU8gja0 # 🤖 Additional information about training This model is full fine-tuned for 1.5 epoch. Total number of steps was 1562.
Loss graph ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/UO0NJz9VN5NncIXi82Nk2.png)

# 🤝 Acknowledgments Thanks to [sablo.ai](https://sablo.ai) for sponsoring this model. Thanks to all the dataset authors mentioned in the datasets section. Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model. Thanks to all open source AI community. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) If you would like to support me: [☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)