SeanLee97 commited on
Commit
e01104c
·
verified ·
1 Parent(s): 52d9e29

use cosine_similarity

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -2614,7 +2614,7 @@ language:
2614
  **🤝 Follow us on:**
2615
 
2616
  - GitHub: https://github.com/SeanLee97/AnglE.
2617
- - Arxiv: https://arxiv.org/abs/2309.12871
2618
  - 📘 Document: https://angle.readthedocs.io/en/latest/index.html
2619
 
2620
  Welcome to using AnglE to train and infer powerful sentence embeddings.
@@ -2645,18 +2645,18 @@ There is no need to specify any prompts.
2645
 
2646
  ```python
2647
  from angle_emb import AnglE
2648
- from scipy import spatial
2649
 
2650
  angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
2651
  doc_vecs = angle.encode([
2652
  'The weather is great!',
2653
  'The weather is very good!',
2654
  'i am going to bed'
2655
- ])
2656
 
2657
  for i, dv1 in enumerate(doc_vecs):
2658
  for dv2 in doc_vecs[i+1:]:
2659
- print(1 - spatial.distance.cosine(dv1, dv2))
2660
  ```
2661
 
2662
  2) Retrieval Tasks
@@ -2665,7 +2665,7 @@ For retrieval purposes, please use the prompt `Prompts.C` for query (not for doc
2665
 
2666
  ```python
2667
  from angle_emb import AnglE, Prompts
2668
- from scipy import spatial
2669
 
2670
  angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
2671
  qv = angle.encode(Prompts.C.format(text='what is the weather?'))
@@ -2676,7 +2676,7 @@ doc_vecs = angle.encode([
2676
  ])
2677
 
2678
  for dv in doc_vecs:
2679
- print(1 - spatial.distance.cosine(qv[0], dv))
2680
  ```
2681
 
2682
  ## 2. sentence transformer
 
2614
  **🤝 Follow us on:**
2615
 
2616
  - GitHub: https://github.com/SeanLee97/AnglE.
2617
+ - Arxiv: https://arxiv.org/abs/2309.12871 (ACL24)
2618
  - 📘 Document: https://angle.readthedocs.io/en/latest/index.html
2619
 
2620
  Welcome to using AnglE to train and infer powerful sentence embeddings.
 
2645
 
2646
  ```python
2647
  from angle_emb import AnglE
2648
+ from angle_emb.utils import cosine_similarity
2649
 
2650
  angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
2651
  doc_vecs = angle.encode([
2652
  'The weather is great!',
2653
  'The weather is very good!',
2654
  'i am going to bed'
2655
+ ], normalize_embedding=True)
2656
 
2657
  for i, dv1 in enumerate(doc_vecs):
2658
  for dv2 in doc_vecs[i+1:]:
2659
+ print(cosine_similarity(dv1, dv2))
2660
  ```
2661
 
2662
  2) Retrieval Tasks
 
2665
 
2666
  ```python
2667
  from angle_emb import AnglE, Prompts
2668
+ from angle_emb.utils import cosine_similarity
2669
 
2670
  angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
2671
  qv = angle.encode(Prompts.C.format(text='what is the weather?'))
 
2676
  ])
2677
 
2678
  for dv in doc_vecs:
2679
+ print(cosine_similarity(qv[0], dv))
2680
  ```
2681
 
2682
  ## 2. sentence transformer