--- license: apache-2.0 base_model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-ravdess-v8 results: [] --- # wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-ravdess-v8 This model is a fine-tuned version of [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6778 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0178 | 0.15 | 25 | 1.8431 | 0.6181 | | 1.7082 | 0.31 | 50 | 1.5052 | 0.5833 | | 1.4444 | 0.46 | 75 | 1.3458 | 0.5972 | | 1.3888 | 0.62 | 100 | 1.2760 | 0.5972 | | 1.1819 | 0.77 | 125 | 1.1075 | 0.6667 | | 1.1615 | 0.93 | 150 | 1.0666 | 0.625 | | 1.1659 | 1.08 | 175 | 1.3450 | 0.5694 | | 0.9798 | 1.23 | 200 | 0.9866 | 0.6528 | | 0.9893 | 1.39 | 225 | 0.9311 | 0.6806 | | 0.9357 | 1.54 | 250 | 0.9783 | 0.6736 | | 0.7998 | 1.7 | 275 | 0.7924 | 0.7014 | | 0.7444 | 1.85 | 300 | 0.8980 | 0.6806 | | 0.7648 | 2.01 | 325 | 0.8994 | 0.7153 | | 0.607 | 2.16 | 350 | 0.9416 | 0.6597 | | 0.5551 | 2.31 | 375 | 0.7791 | 0.7431 | | 0.5495 | 2.47 | 400 | 0.7665 | 0.7431 | | 0.5498 | 2.62 | 425 | 0.8017 | 0.7222 | | 0.4887 | 2.78 | 450 | 0.6967 | 0.7639 | | 0.5308 | 2.93 | 475 | 0.6857 | 0.7569 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3