--- license: other language: - en base_model: - black-forest-labs/FLUX.1-dev pipeline_tag: text-to-image tags: - diffusers - controlnet - Flux - image-generation --- # Description This repository provides a Diffusers version of FLUX.1-dev Depth ControlNet checkpoint by Xlabs AI, [original repo](https://huggingface.co/XLabs-AI/flux-controlnet-depth-v3). ![Example Picture 1](depth_result.png?raw=true) # How to use This model can be used directly with the diffusers library ``` import torch from diffusers.utils import load_image from diffusers import FluxControlNetModel from diffusers.pipelines import FluxControlNetPipeline from PIL import Image import numpy as np generator = torch.Generator(device="cuda").manual_seed(87544357) controlnet = FluxControlNetModel.from_pretrained( "Xlabs-AI/flux-controlnet-depth-diffusers", torch_dtype=torch.bfloat16, use_safetensors=True, ) pipe = FluxControlNetPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16 ) pipe.to("cuda") control_image = load_image("https://huggingface.co/Xlabs-AI/flux-controlnet-depth-diffusers/resolve/main/depth_example.png") prompt = "photo of fashion woman in the street" image = pipe( prompt, control_image=control_image, controlnet_conditioning_scale=0.7, num_inference_steps=25, guidance_scale=3.5, height=768, width=1024, generator=generator, num_images_per_prompt=1, ).images[0] image.save("output_test_controlnet.png") ``` ## License Our weights fall under the [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) Non-Commercial License