File size: 5,632 Bytes
0403d4c
441cb30
373ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0403d4c
 
f76fa67
0403d4c
 
 
441cb30
0403d4c
 
 
 
 
 
 
441cb30
0403d4c
441cb30
 
 
 
 
0403d4c
 
 
 
 
 
441cb30
 
0403d4c
45b7bb0
 
 
 
 
 
 
 
 
 
 
 
0403d4c
 
 
441cb30
0403d4c
441cb30
 
 
 
0403d4c
 
 
441cb30
0403d4c
 
 
441cb30
0403d4c
 
 
441cb30
 
 
0403d4c
 
 
441cb30
0403d4c
 
 
441cb30
0403d4c
441cb30
 
 
0403d4c
441cb30
 
0403d4c
441cb30
 
 
 
373ff47
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
license: mit
library_name: transformers
model-index:
- name: caliburn-12b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 35.76
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 35.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 9.67
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.52
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.78
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 29.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
      name: Open LLM Leaderboard
---

# caliburn 12b-merged

<!-- Provide a quick summary of what the model is/does. -->

This model is a 12 billion parameter language model created by merging multiple existing models using the MergeKit library. It is designed for general text generation tasks.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is a large language model with 12 billion parameters, created by merging multiple pre-existing models using the MergeKit library. The model is based on the transformer architecture and is fine-tuned for general text generation tasks.

- **Developed by:** The user who created this merged model
- **Model type:** Transformer-based language model
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** Multiple source models merged using MergeKit

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** N/A
- **Demo [optional]:** N/A

## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xclbr7__caliburn-12b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |22.68|
|IFEval (0-Shot)    |35.76|
|BBH (3-Shot)       |35.64|
|MATH Lvl 5 (4-Shot)| 9.67|
|GPQA (0-shot)      |11.52|
|MuSR (0-shot)      |13.78|
|MMLU-PRO (5-shot)  |29.72|

### Direct Use

This model can be used for various natural language processing tasks, including:

- Text generation
- Code completion
- Question answering
- Summarization

### Downstream Use [optional]

The model can be fine-tuned for specific tasks or domains to improve performance on targeted applications.

### Out-of-Scope Use

This model should not be used for generating harmful, biased, or unethical content. It should not be relied upon for critical decision-making without human oversight.

## Bias, Risks, and Limitations

- The model may inherit biases present in its training data or source models.
- It may generate incorrect or nonsensical information.
- The model's outputs should be carefully reviewed and fact-checked.

### Recommendations

Users should be aware of the model's limitations and potential biases. It's recommended to use the model with appropriate content filtering and human oversight, especially for public-facing applications.

## How to Get Started with the Model

Use the following code to get started with the model:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("./models/12b-merged")
model = AutoModelForCausalLM.from_pretrained("./models/12b-merged", torch_dtype=torch.float16).to("cuda")

prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs.to("cuda"), max_new_tokens=100)
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(result)