File size: 5,632 Bytes
0403d4c 441cb30 373ff47 0403d4c f76fa67 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 45b7bb0 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 0403d4c 441cb30 373ff47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
license: mit
library_name: transformers
model-index:
- name: caliburn-12b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 35.76
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 35.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 9.67
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.52
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.78
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.72
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b
name: Open LLM Leaderboard
---
# caliburn 12b-merged
<!-- Provide a quick summary of what the model is/does. -->
This model is a 12 billion parameter language model created by merging multiple existing models using the MergeKit library. It is designed for general text generation tasks.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is a large language model with 12 billion parameters, created by merging multiple pre-existing models using the MergeKit library. The model is based on the transformer architecture and is fine-tuned for general text generation tasks.
- **Developed by:** The user who created this merged model
- **Model type:** Transformer-based language model
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** Multiple source models merged using MergeKit
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** N/A
- **Demo [optional]:** N/A
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xclbr7__caliburn-12b)
| Metric |Value|
|-------------------|----:|
|Avg. |22.68|
|IFEval (0-Shot) |35.76|
|BBH (3-Shot) |35.64|
|MATH Lvl 5 (4-Shot)| 9.67|
|GPQA (0-shot) |11.52|
|MuSR (0-shot) |13.78|
|MMLU-PRO (5-shot) |29.72|
### Direct Use
This model can be used for various natural language processing tasks, including:
- Text generation
- Code completion
- Question answering
- Summarization
### Downstream Use [optional]
The model can be fine-tuned for specific tasks or domains to improve performance on targeted applications.
### Out-of-Scope Use
This model should not be used for generating harmful, biased, or unethical content. It should not be relied upon for critical decision-making without human oversight.
## Bias, Risks, and Limitations
- The model may inherit biases present in its training data or source models.
- It may generate incorrect or nonsensical information.
- The model's outputs should be carefully reviewed and fact-checked.
### Recommendations
Users should be aware of the model's limitations and potential biases. It's recommended to use the model with appropriate content filtering and human oversight, especially for public-facing applications.
## How to Get Started with the Model
Use the following code to get started with the model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("./models/12b-merged")
model = AutoModelForCausalLM.from_pretrained("./models/12b-merged", torch_dtype=torch.float16).to("cuda")
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs.to("cuda"), max_new_tokens=100)
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(result)
|