--- license: mit library_name: transformers model-index: - name: caliburn-12b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 35.76 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.64 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 9.67 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 11.52 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.78 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 29.72 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Xclbr7/caliburn-12b name: Open LLM Leaderboard --- # caliburn 12b-merged This model is a 12 billion parameter language model created by merging multiple existing models using the MergeKit library. It is designed for general text generation tasks. ## Model Details ### Model Description This is a large language model with 12 billion parameters, created by merging multiple pre-existing models using the MergeKit library. The model is based on the transformer architecture and is fine-tuned for general text generation tasks. - **Developed by:** The user who created this merged model - **Model type:** Transformer-based language model - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** Multiple source models merged using MergeKit ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** N/A - **Demo [optional]:** N/A ## Uses ### Direct Use This model can be used for various natural language processing tasks, including: - Text generation - Code completion - Question answering - Summarization ### Downstream Use [optional] The model can be fine-tuned for specific tasks or domains to improve performance on targeted applications. ### Out-of-Scope Use This model should not be used for generating harmful, biased, or unethical content. It should not be relied upon for critical decision-making without human oversight. ## Bias, Risks, and Limitations - The model may inherit biases present in its training data or source models. - It may generate incorrect or nonsensical information. - The model's outputs should be carefully reviewed and fact-checked. ### Recommendations Users should be aware of the model's limitations and potential biases. It's recommended to use the model with appropriate content filtering and human oversight, especially for public-facing applications. ## How to Get Started with the Model Use the following code to get started with the model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("./models/12b-merged") model = AutoModelForCausalLM.from_pretrained("./models/12b-merged", torch_dtype=torch.float16).to("cuda") prompt = "Your prompt here" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs.to("cuda"), max_new_tokens=100) result = tokenizer.batch_decode(outputs, skip_special_tokens=True) print(result) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xclbr7__caliburn-12b) | Metric |Value| |-------------------|----:| |Avg. |22.68| |IFEval (0-Shot) |35.76| |BBH (3-Shot) |35.64| |MATH Lvl 5 (4-Shot)| 9.67| |GPQA (0-shot) |11.52| |MuSR (0-shot) |13.78| |MMLU-PRO (5-shot) |29.72|