Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 239.68 +/- 45.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7edc25da8040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7edc25da80d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7edc25da8160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7edc25da81f0>", "_build": "<function ActorCriticPolicy._build at 0x7edc25da8280>", "forward": "<function ActorCriticPolicy.forward at 0x7edc25da8310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7edc25da83a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7edc25da8430>", "_predict": "<function ActorCriticPolicy._predict at 0x7edc25da84c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7edc25da8550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7edc25da85e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7edc25da8670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7edc25da0400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726155578783530744, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrqdr6PehS87jy6OSRwazfbZng9Cv3auAAAgD8AAIA/M02ZPI9AOzvSOzQ9Slk0vl7lZ7vz0Z+7AAAAAAAAAAAaxYU9ax9lP+V4fD3dI+m+l2GPPFICkTwAAAAAAAAAAFAzgD6OMZ+86jrQu4sq5DmwDQq+klmnOgAAgD8AAIA/c2vtPYWBrrtIefq8k3HlvSCWkrwEWbG+AACAPwAAgD+NelI+/wKhP33pzD6ABDO/z3EpPub6kj0AAAAAAAAAAPpYOD7xrjc8TZjuODto/jZUosY9ptEVuAAAgD8AAIA/dtLIPmvPzD02sSS8xc2ruu+oRj4amJE7AACAPwAAgD8q9WK+8Ct4P4EJPb4XfgC/q5xzviuTCj0AAAAAAAAAAGB+M76edzc/IJYgO++Yt779WMq94Pm0PQAAAAAAAAAAGnibPRTorLrHbr46Sr0XPDUgpDpCWwm9AACAPwAAgD9TQB++xSCmPMueCj7PRn2+BF2YPEBxdz0AAAAAAAAAAHM+eL4f0508jgkKt+c3dDWHTCq+Jg4vNgAAgD8AAIA/Zn7Du8EmtT+Osxq/y9BEPte/4jsuKww+AAAAAAAAAABG824+LNCPPL4BHzu6V4A51tUYPnsRR7oAAIA/AACAPyZ/Bj7SWOa7rlMPPYNdwjx64Eu9WYugPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/+/m9xp+OMAWyUS/SMAXSUR0CZS13kPtladX2UKGgGR0Bwcht8/lhgaAdL82gIR0CZS+mQKa5PdX2UKGgGR0Bs7jLlmvnsaAdNHwFoCEdAmU3KHwgDBHV9lChoBkdAcMSnvUjLS2gHS+hoCEdAmU96gRK6F3V9lChoBkdAbvsaCL/CImgHS+5oCEdAmVGT8pCrtHV9lChoBkdAbasvpyIYWWgHTQABaAhHQJlSgF6iTMd1fZQoaAZHQHFV3qeK8+RoB0v3aAhHQJlUFqL0jC51fZQoaAZHQHEGfbblA/toB00VAWgIR0CZVL2WIGhVdX2UKGgGR0Bka+CmMwUQaAdN6ANoCEdAmVVfZqVQh3V9lChoBkdAcR/gQHzH0mgHS+ZoCEdAmVc1p9JBgXV9lChoBkdAaaS+IuXeFmgHTbACaAhHQJm0kVFhG6R1fZQoaAZHQHDUQMx46fdoB0vXaAhHQJm0nE3sHB11fZQoaAZHQGO9uWrwOONoB03oA2gIR0CZtd2TgVGkdX2UKGgGR0BypSvnr6ciaAdNZwFoCEdAmbd4wmE5AHV9lChoBkdAbDD2/zreImgHTSUBaAhHQJm35ruYx+N1fZQoaAZHQHB8omb9ZRtoB0v5aAhHQJm4gbcXWOJ1fZQoaAZHQGheP6KtPpJoB02tAWgIR0CZuM9AX2ugdX2UKGgGR0BuJgG0NSZSaAdL92gIR0CZuOssg+yJdX2UKGgGR0BsXXKnvUjLaAdL7GgIR0CZue2V3Ux3dX2UKGgGR0BsMVFBppN9aAdNKgFoCEdAmbpLOeJ53XV9lChoBkdAcOyhKlHjImgHS+doCEdAmcCXvx6OYXV9lChoBkdAYOvk3juKGmgHTegDaAhHQJnA+3H7xd91fZQoaAZHQEqAGTLW7OFoB0u0aAhHQJnBNUYKpkx1fZQoaAZHQG4Gr0rbxmVoB0vWaAhHQJnBQXj2i+N1fZQoaAZHQHCgjGPxQSBoB0v2aAhHQJnBX1xsEaF1fZQoaAZHQG9dGwRoRI1oB0vjaAhHQJnDtJOFg2J1fZQoaAZHQHB47JW/8EVoB0vtaAhHQJnETt7a7Ep1fZQoaAZHQG+X61b7j1hoB0vdaAhHQJnEnT/hl191fZQoaAZHQHI/DQE6kqNoB0v6aAhHQJnE3VbzK9x1fZQoaAZHQGEHPvSc9W9oB03oA2gIR0CZxXdXDFZQdX2UKGgGR0BxjYCOmzjWaAdNAgFoCEdAmcYumvW6LHV9lChoBkdAcHhjGT9sJ2gHTVoBaAhHQJnHPUx20Rh1fZQoaAZHQGABCd8Rcu9oB03oA2gIR0CZx/5KvmozdX2UKGgGR0Brf5MSK3uvaAdNwQJoCEdAmciR7RfF73V9lChoBkdAXvHqxC6YmmgHTegDaAhHQJnI+rELpiZ1fZQoaAZHQHBcn84xUNtoB0vsaAhHQJnJwdaMaS91fZQoaAZHQGJVXNcGC7NoB03oA2gIR0CZyjhRqGlAdX2UKGgGR0Bu+whwEQoTaAdNIwFoCEdAmcshTn7pFHV9lChoBkdAb/yWfK6nSGgHS+5oCEdAmctlMdtEX3V9lChoBkdAb57z/6wdKmgHTSwBaAhHQJnLfLt/nW91fZQoaAZHQG5EB+OOsDJoB0vtaAhHQJnMCHoHLRt1fZQoaAZHQHFHuWv8qF1oB0v4aAhHQJnMg4Nqgyx1fZQoaAZHQG358Z9/jKhoB0vyaAhHQJnNeDYh+v11fZQoaAZHQGvgWJaaCtloB00mAWgIR0CZzmxO+IuXdX2UKGgGR0Bvx8B6rvLHaAdL9WgIR0CZzz8b70nPdX2UKGgGR0A4a6ySmqHXaAdLwGgIR0CZz2uDSPU8dX2UKGgGR0Bqx35eqrBCaAdNewFoCEdAmdAh5cC5mXV9lChoBkdAcUMJD3M6imgHS/NoCEdAmdA4p+c6NnV9lChoBkdAbcRCeEqUeWgHTQUBaAhHQJnQVschkiF1fZQoaAZHQHByju4PPLRoB0v7aAhHQJnRrEGZ/kN1fZQoaAZHQHA9NsnAqNJoB0viaAhHQJnSSQNkOI91fZQoaAZHQHBkXSKFZgZoB0vXaAhHQJnSjBbfP5Z1fZQoaAZHQHDFi9h7VrhoB0vUaAhHQJnTABLf1pV1fZQoaAZHQHAdS8zyjHpoB0v8aAhHQJnVb/EOy3V1fZQoaAZHQHDZOdCmdiFoB0vvaAhHQJnWFsN2C/Z1fZQoaAZHQG3p0S7GvOhoB0voaAhHQJnXxuuRs/J1fZQoaAZHQG5d55JK8L9oB00HAWgIR0CZ2CqSHM2WdX2UKGgGR0BvY7KgZjx1aAdL/mgIR0CZ2uPqs2ehdX2UKGgGR0BtYKGxlg+haAdL4WgIR0CZ23G0NSZSdX2UKGgGR0Bt/TfR/mT1aAdNBAFoCEdAmdxVeBxxUHV9lChoBkdAcGr9nbqQimgHS9xoCEdAmd5byxzJZHV9lChoBkdAb+Sz3yqdYmgHS9VoCEdAmd7SxzJZGXV9lChoBkdAcENFHJ9y92gHS+poCEdAmeGss189fXV9lChoBkdAcNgLtNSIg2gHTQIBaAhHQJnjKDqW1MN1fZQoaAZHQHBdX2AXl8xoB02jAmgIR0CZ45Z7ojfOdX2UKGgGR0Bwx4PGyX2NaAdL2WgIR0CZ5D+De0ojdX2UKGgGR0BjwhllK9PDaAdN6ANoCEdAmeS8vduYQnV9lChoBkdAXRZRzijtX2gHTegDaAhHQJnlOErXlKd1fZQoaAZHQGy1r2xptaZoB0vraAhHQJnliEal1r91fZQoaAZHQEl8ij+JgstoB0vHaAhHQJnmrbwjMV11fZQoaAZHQG3/jMNc4YJoB0vnaAhHQJnoSlWOp851fZQoaAZHQGMrP7m+0w9oB03oA2gIR0CZ6/OcUdq+dX2UKGgGR0BvENQuVX3haAdL8GgIR0CZ6/RlpXZHdX2UKGgGR0Bv2l3r2QGOaAdL3GgIR0CZ7Kf6GgzydX2UKGgGR0BtnO69TP0JaAdL7WgIR0CZ7hBj4HopdX2UKGgGR0Bt87beuV5baAdNsAFoCEdAme+KFdszmHV9lChoBkdAbD7OxB3RomgHS/5oCEdAme/gUL2HtXV9lChoBkdAb4kDGLk0amgHS/9oCEdAmfCAs052hnV9lChoBkdAcLwk1dgOSWgHS/loCEdAmfFDQVsUI3V9lChoBkdAcRAzoEB8yGgHS+hoCEdAmfH82NvOyHV9lChoBkdAYMNo5ggHNWgHTegDaAhHQJnzKHck+ot1fZQoaAZHQHENcN+b3GpoB00xAWgIR0CZ85tihFmWdX2UKGgGR0BwVa4gA6uGaAdL4GgIR0CZ86tcOby6dX2UKGgGR0BwMPjT8YQ8aAdL5mgIR0CZ9ps3AEdOdX2UKGgGR0BkHDtw71ZlaAdN6ANoCEdAmffjMRpUP3V9lChoBkdAbJFFxXGOuWgHS+doCEdAmfgKJQ+EAnV9lChoBkdAbatVOKwY+GgHS9hoCEdAmfhugYgq3HV9lChoBkdAYZcL8aXKKmgHTegDaAhHQJn45cTrVvx1fZQoaAZHQGHyPfCQ9zRoB03oA2gIR0CZ+RIDYAbRdX2UKGgGR0BwzxHkLhJiaAdNDAFoCEdAmfqy4J/oaHV9lChoBkdAbuobKA8SwmgHS+ZoCEdAmfsr2g398HV9lChoBkdAZOHo5ggHNWgHTegDaAhHQJn7KBVdX1d1fZQoaAZHQG9yfPPcBU9oB00BAWgIR0CZ+0LqD9OzdX2UKGgGR0BwrA2XLNfPaAdL32gIR0CZ+0f0Eov0dX2UKGgGR0BxC9h3JPqLaAdNFQFoCEdAmftoX0oSc3V9lChoBkdAcH0kiliz9mgHS/NoCEdAmf9Q9JSR83V9lChoBkdAcOgZqVQhwGgHS9toCEdAmf+tAcDKYHV9lChoBkdAbV35eqrBCWgHS/1oCEdAmf/RYaHbh3V9lChoBkdAbWsvhZQpF2gHTYABaAhHQJoACraM72d1fZQoaAZHQG7ZnVXmvGJoB0vgaAhHQJoBjmxMWXV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9aad980a5e666dc52b4bea2cd7c5c522796fa755cf596491bde6f9b21c76c69f
|
3 |
+
size 148007
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7edc25da8040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7edc25da80d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7edc25da8160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7edc25da81f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7edc25da8280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7edc25da8310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7edc25da83a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7edc25da8430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7edc25da84c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7edc25da8550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7edc25da85e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7edc25da8670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7edc25da0400>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1726155578783530744,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrqdr6PehS87jy6OSRwazfbZng9Cv3auAAAgD8AAIA/M02ZPI9AOzvSOzQ9Slk0vl7lZ7vz0Z+7AAAAAAAAAAAaxYU9ax9lP+V4fD3dI+m+l2GPPFICkTwAAAAAAAAAAFAzgD6OMZ+86jrQu4sq5DmwDQq+klmnOgAAgD8AAIA/c2vtPYWBrrtIefq8k3HlvSCWkrwEWbG+AACAPwAAgD+NelI+/wKhP33pzD6ABDO/z3EpPub6kj0AAAAAAAAAAPpYOD7xrjc8TZjuODto/jZUosY9ptEVuAAAgD8AAIA/dtLIPmvPzD02sSS8xc2ruu+oRj4amJE7AACAPwAAgD8q9WK+8Ct4P4EJPb4XfgC/q5xzviuTCj0AAAAAAAAAAGB+M76edzc/IJYgO++Yt779WMq94Pm0PQAAAAAAAAAAGnibPRTorLrHbr46Sr0XPDUgpDpCWwm9AACAPwAAgD9TQB++xSCmPMueCj7PRn2+BF2YPEBxdz0AAAAAAAAAAHM+eL4f0508jgkKt+c3dDWHTCq+Jg4vNgAAgD8AAIA/Zn7Du8EmtT+Osxq/y9BEPte/4jsuKww+AAAAAAAAAABG824+LNCPPL4BHzu6V4A51tUYPnsRR7oAAIA/AACAPyZ/Bj7SWOa7rlMPPYNdwjx64Eu9WYugPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/+/m9xp+OMAWyUS/SMAXSUR0CZS13kPtladX2UKGgGR0Bwcht8/lhgaAdL82gIR0CZS+mQKa5PdX2UKGgGR0Bs7jLlmvnsaAdNHwFoCEdAmU3KHwgDBHV9lChoBkdAcMSnvUjLS2gHS+hoCEdAmU96gRK6F3V9lChoBkdAbvsaCL/CImgHS+5oCEdAmVGT8pCrtHV9lChoBkdAbasvpyIYWWgHTQABaAhHQJlSgF6iTMd1fZQoaAZHQHFV3qeK8+RoB0v3aAhHQJlUFqL0jC51fZQoaAZHQHEGfbblA/toB00VAWgIR0CZVL2WIGhVdX2UKGgGR0Bka+CmMwUQaAdN6ANoCEdAmVVfZqVQh3V9lChoBkdAcR/gQHzH0mgHS+ZoCEdAmVc1p9JBgXV9lChoBkdAaaS+IuXeFmgHTbACaAhHQJm0kVFhG6R1fZQoaAZHQHDUQMx46fdoB0vXaAhHQJm0nE3sHB11fZQoaAZHQGO9uWrwOONoB03oA2gIR0CZtd2TgVGkdX2UKGgGR0BypSvnr6ciaAdNZwFoCEdAmbd4wmE5AHV9lChoBkdAbDD2/zreImgHTSUBaAhHQJm35ruYx+N1fZQoaAZHQHB8omb9ZRtoB0v5aAhHQJm4gbcXWOJ1fZQoaAZHQGheP6KtPpJoB02tAWgIR0CZuM9AX2ugdX2UKGgGR0BuJgG0NSZSaAdL92gIR0CZuOssg+yJdX2UKGgGR0BsXXKnvUjLaAdL7GgIR0CZue2V3Ux3dX2UKGgGR0BsMVFBppN9aAdNKgFoCEdAmbpLOeJ53XV9lChoBkdAcOyhKlHjImgHS+doCEdAmcCXvx6OYXV9lChoBkdAYOvk3juKGmgHTegDaAhHQJnA+3H7xd91fZQoaAZHQEqAGTLW7OFoB0u0aAhHQJnBNUYKpkx1fZQoaAZHQG4Gr0rbxmVoB0vWaAhHQJnBQXj2i+N1fZQoaAZHQHCgjGPxQSBoB0v2aAhHQJnBX1xsEaF1fZQoaAZHQG9dGwRoRI1oB0vjaAhHQJnDtJOFg2J1fZQoaAZHQHB47JW/8EVoB0vtaAhHQJnETt7a7Ep1fZQoaAZHQG+X61b7j1hoB0vdaAhHQJnEnT/hl191fZQoaAZHQHI/DQE6kqNoB0v6aAhHQJnE3VbzK9x1fZQoaAZHQGEHPvSc9W9oB03oA2gIR0CZxXdXDFZQdX2UKGgGR0BxjYCOmzjWaAdNAgFoCEdAmcYumvW6LHV9lChoBkdAcHhjGT9sJ2gHTVoBaAhHQJnHPUx20Rh1fZQoaAZHQGABCd8Rcu9oB03oA2gIR0CZx/5KvmozdX2UKGgGR0Brf5MSK3uvaAdNwQJoCEdAmciR7RfF73V9lChoBkdAXvHqxC6YmmgHTegDaAhHQJnI+rELpiZ1fZQoaAZHQHBcn84xUNtoB0vsaAhHQJnJwdaMaS91fZQoaAZHQGJVXNcGC7NoB03oA2gIR0CZyjhRqGlAdX2UKGgGR0Bu+whwEQoTaAdNIwFoCEdAmcshTn7pFHV9lChoBkdAb/yWfK6nSGgHS+5oCEdAmctlMdtEX3V9lChoBkdAb57z/6wdKmgHTSwBaAhHQJnLfLt/nW91fZQoaAZHQG5EB+OOsDJoB0vtaAhHQJnMCHoHLRt1fZQoaAZHQHFHuWv8qF1oB0v4aAhHQJnMg4Nqgyx1fZQoaAZHQG358Z9/jKhoB0vyaAhHQJnNeDYh+v11fZQoaAZHQGvgWJaaCtloB00mAWgIR0CZzmxO+IuXdX2UKGgGR0Bvx8B6rvLHaAdL9WgIR0CZzz8b70nPdX2UKGgGR0A4a6ySmqHXaAdLwGgIR0CZz2uDSPU8dX2UKGgGR0Bqx35eqrBCaAdNewFoCEdAmdAh5cC5mXV9lChoBkdAcUMJD3M6imgHS/NoCEdAmdA4p+c6NnV9lChoBkdAbcRCeEqUeWgHTQUBaAhHQJnQVschkiF1fZQoaAZHQHByju4PPLRoB0v7aAhHQJnRrEGZ/kN1fZQoaAZHQHA9NsnAqNJoB0viaAhHQJnSSQNkOI91fZQoaAZHQHBkXSKFZgZoB0vXaAhHQJnSjBbfP5Z1fZQoaAZHQHDFi9h7VrhoB0vUaAhHQJnTABLf1pV1fZQoaAZHQHAdS8zyjHpoB0v8aAhHQJnVb/EOy3V1fZQoaAZHQHDZOdCmdiFoB0vvaAhHQJnWFsN2C/Z1fZQoaAZHQG3p0S7GvOhoB0voaAhHQJnXxuuRs/J1fZQoaAZHQG5d55JK8L9oB00HAWgIR0CZ2CqSHM2WdX2UKGgGR0BvY7KgZjx1aAdL/mgIR0CZ2uPqs2ehdX2UKGgGR0BtYKGxlg+haAdL4WgIR0CZ23G0NSZSdX2UKGgGR0Bt/TfR/mT1aAdNBAFoCEdAmdxVeBxxUHV9lChoBkdAcGr9nbqQimgHS9xoCEdAmd5byxzJZHV9lChoBkdAb+Sz3yqdYmgHS9VoCEdAmd7SxzJZGXV9lChoBkdAcENFHJ9y92gHS+poCEdAmeGss189fXV9lChoBkdAcNgLtNSIg2gHTQIBaAhHQJnjKDqW1MN1fZQoaAZHQHBdX2AXl8xoB02jAmgIR0CZ45Z7ojfOdX2UKGgGR0Bwx4PGyX2NaAdL2WgIR0CZ5D+De0ojdX2UKGgGR0BjwhllK9PDaAdN6ANoCEdAmeS8vduYQnV9lChoBkdAXRZRzijtX2gHTegDaAhHQJnlOErXlKd1fZQoaAZHQGy1r2xptaZoB0vraAhHQJnliEal1r91fZQoaAZHQEl8ij+JgstoB0vHaAhHQJnmrbwjMV11fZQoaAZHQG3/jMNc4YJoB0vnaAhHQJnoSlWOp851fZQoaAZHQGMrP7m+0w9oB03oA2gIR0CZ6/OcUdq+dX2UKGgGR0BvENQuVX3haAdL8GgIR0CZ6/RlpXZHdX2UKGgGR0Bv2l3r2QGOaAdL3GgIR0CZ7Kf6GgzydX2UKGgGR0BtnO69TP0JaAdL7WgIR0CZ7hBj4HopdX2UKGgGR0Bt87beuV5baAdNsAFoCEdAme+KFdszmHV9lChoBkdAbD7OxB3RomgHS/5oCEdAme/gUL2HtXV9lChoBkdAb4kDGLk0amgHS/9oCEdAmfCAs052hnV9lChoBkdAcLwk1dgOSWgHS/loCEdAmfFDQVsUI3V9lChoBkdAcRAzoEB8yGgHS+hoCEdAmfH82NvOyHV9lChoBkdAYMNo5ggHNWgHTegDaAhHQJnzKHck+ot1fZQoaAZHQHENcN+b3GpoB00xAWgIR0CZ85tihFmWdX2UKGgGR0BwVa4gA6uGaAdL4GgIR0CZ86tcOby6dX2UKGgGR0BwMPjT8YQ8aAdL5mgIR0CZ9ps3AEdOdX2UKGgGR0BkHDtw71ZlaAdN6ANoCEdAmffjMRpUP3V9lChoBkdAbJFFxXGOuWgHS+doCEdAmfgKJQ+EAnV9lChoBkdAbatVOKwY+GgHS9hoCEdAmfhugYgq3HV9lChoBkdAYZcL8aXKKmgHTegDaAhHQJn45cTrVvx1fZQoaAZHQGHyPfCQ9zRoB03oA2gIR0CZ+RIDYAbRdX2UKGgGR0BwzxHkLhJiaAdNDAFoCEdAmfqy4J/oaHV9lChoBkdAbuobKA8SwmgHS+ZoCEdAmfsr2g398HV9lChoBkdAZOHo5ggHNWgHTegDaAhHQJn7KBVdX1d1fZQoaAZHQG9yfPPcBU9oB00BAWgIR0CZ+0LqD9OzdX2UKGgGR0BwrA2XLNfPaAdL32gIR0CZ+0f0Eov0dX2UKGgGR0BxC9h3JPqLaAdNFQFoCEdAmftoX0oSc3V9lChoBkdAcH0kiliz9mgHS/NoCEdAmf9Q9JSR83V9lChoBkdAcOgZqVQhwGgHS9toCEdAmf+tAcDKYHV9lChoBkdAbV35eqrBCWgHS/1oCEdAmf/RYaHbh3V9lChoBkdAbWsvhZQpF2gHTYABaAhHQJoACraM72d1fZQoaAZHQG7ZnVXmvGJoB0vgaAhHQJoBjmxMWXV1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a6adad79cb51450ccd9da0b38ade547d2d9c54e6304f357209c6b9d0d8b6531
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:680a420c335051acdda572c092d0f06fbd15ae1d0c3b52826aacac37c8b0440c
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (181 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 239.67937114726456, "std_reward": 45.06738392016742, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-12T17:07:13.091574"}
|