--- license: apache-2.0 tags: - moe - mergekit - merge - chinese - arabic - english - multilingual - german - french - gagan3012/MetaModel - jeonsworld/CarbonVillain-en-10.7B-v2 - jeonsworld/CarbonVillain-en-10.7B-v4 - TomGrc/FusionNet_linear - DopeorNope/SOLARC-M-10.7B - VAGOsolutions/SauerkrautLM-SOLAR-Instruct - upstage/SOLAR-10.7B-Instruct-v1.0 - fblgit/UNA-SOLAR-10.7B-Instruct-v1.0 --- # MetaModel_moex8 This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models: * [gagan3012/MetaModel](https://huggingface.co/gagan3012/MetaModel) * [jeonsworld/CarbonVillain-en-10.7B-v2](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v2) * [jeonsworld/CarbonVillain-en-10.7B-v4](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v4) * [TomGrc/FusionNet_linear](https://huggingface.co/TomGrc/FusionNet_linear) * [DopeorNope/SOLARC-M-10.7B](https://huggingface.co/DopeorNope/SOLARC-M-10.7B) * [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct) * [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) * [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) ## 🧩 Configuration ```yamlbase_model: jeonsworld/CarbonVillain-en-10.7B-v4 dtype: bfloat16 experts: - positive_prompts: - '' source_model: gagan3012/MetaModel - positive_prompts: - '' source_model: jeonsworld/CarbonVillain-en-10.7B-v2 - positive_prompts: - '' source_model: jeonsworld/CarbonVillain-en-10.7B-v4 - positive_prompts: - '' source_model: TomGrc/FusionNet_linear - positive_prompts: - '' source_model: DopeorNope/SOLARC-M-10.7B - positive_prompts: - '' source_model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct - positive_prompts: - '' source_model: upstage/SOLAR-10.7B-Instruct-v1.0 - positive_prompts: - '' source_model: fblgit/UNA-SOLAR-10.7B-Instruct-v1.0 gate_mode: hidden ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "gagan3012/MetaModel_moex8" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```