--- license: apache-2.0 base_model: google/electra-base-discriminator tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: electra-base-multiple-choice-v1 results: [] --- # electra-base-multiple-choice-v1 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2889 - Accuracy: 0.8975 - Precision: 0.9011 - Recall: 0.8931 - F1: 0.8971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 269 | 0.2970 | 0.8804 | 0.8830 | 0.8769 | 0.8799 | | 0.3559 | 2.0 | 538 | 0.2695 | 0.8932 | 0.8965 | 0.8891 | 0.8928 | | 0.3559 | 3.0 | 807 | 0.2889 | 0.8975 | 0.9011 | 0.8931 | 0.8971 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0