File size: 1,794 Bytes
79c3e68
 
 
 
 
dda6030
 
 
 
 
79c3e68
 
 
 
 
 
 
 
 
 
dda6030
 
 
 
 
 
 
79c3e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda6030
 
 
 
 
 
 
 
 
79c3e68
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: mnaylor/mega-base-wikitext
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mega-base-multiple-choice-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mega-base-multiple-choice-v2

This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6932
- Accuracy: 0.4909
- Precision: 0.4911
- Recall: 0.4997
- F1: 0.4953

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 1024
- eval_batch_size: 1024
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 24000
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 1.0   | 34   | 0.6932          | 0.4975   | 0.4976    | 0.5040 | 0.5007 |
| No log        | 2.0   | 68   | 0.6932          | 0.4922   | 0.4924    | 0.5013 | 0.4968 |
| No log        | 3.0   | 102  | 0.6932          | 0.4909   | 0.4911    | 0.4997 | 0.4953 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0