Xenova HF staff commited on
Commit
b957f46
·
1 Parent(s): a6583d5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md CHANGED
@@ -5,4 +5,55 @@ pipeline_tag: zero-shot-object-detection
5
 
6
  https://huggingface.co/google/owlvit-base-patch32 with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/google/owlvit-base-patch32 with ONNX weights to be compatible with Transformers.js.
7
 
8
+
9
+ ## Usage (Transformers.js)
10
+
11
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
12
+ ```bash
13
+ npm i @xenova/transformers
14
+ ```
15
+
16
+ **Example:** Zero-shot object detection w/ `Xenova/owlvit-base-patch32`.
17
+ ```js
18
+ import { pipeline } from '@xenova/transformers';
19
+
20
+ const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32');
21
+
22
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/astronaut.png';
23
+ const candidate_labels = ['human face', 'rocket', 'helmet', 'american flag'];
24
+ const output = await detector (url, candidate_labels);
25
+ // [
26
+ // { score: 0.24392342567443848, label: 'human face', box: { xmin: 180, ymin: 67, xmax: 274, ymax: 175 } },
27
+ // { score: 0.15129457414150238, label: 'american flag', box: { xmin: 0, ymin: 4, xmax: 106, ymax: 513 } },
28
+ // { score: 0.13649864494800568, label: 'helmet', box: { xmin: 277, ymin: 337, xmax: 511, ymax: 511 } },
29
+ // { score: 0.10262022167444229, label: 'rocket', box: { xmin: 352, ymin: -1, xmax: 463, ymax: 287 } }
30
+ // ]
31
+ ```
32
+
33
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/rNLU-bl1_H0HrPgkPMhso.png)
34
+
35
+
36
+ **Example:** Zero-shot object detection w/ `Xenova/owlvit-base-patch32` (additional parameters).
37
+ ```js
38
+ import { pipeline } from '@xenova/transformers';
39
+
40
+ const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32');
41
+
42
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/beach.png';
43
+ const candidate_labels = ['hat', 'book', 'sunglasses', 'camera'];
44
+ const output = await detector(url, candidate_labels, { topk: 4, threshold: 0.05 });
45
+ // [
46
+ // { score: 0.1606510728597641, label: 'sunglasses', box: { xmin: 347, ymin: 229, xmax: 429, ymax: 264 } },
47
+ // { score: 0.08935828506946564, label: 'hat', box: { xmin: 38, ymin: 174, xmax: 258, ymax: 364 } },
48
+ // { score: 0.08530698716640472, label: 'camera', box: { xmin: 187, ymin: 350, xmax: 260, ymax: 411 } },
49
+ // { score: 0.08349756896495819, label: 'book', box: { xmin: 261, ymin: 280, xmax: 494, ymax: 425 } }
50
+ // ]
51
+ ```
52
+
53
+
54
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/OKHu5M0RcAlwPkydxBZyB.png)
55
+
56
+ ---
57
+
58
+
59
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).