File size: 40,541 Bytes
09dc1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

import numpy as np
from huggingface_hub import PyTorchModelHubMixin
from utils import FileClient, imfrombytes, img2tensor, tensor2img

class DFE(nn.Module):
    """ Dual Feature Extraction 

    Args:

        in_features (int): Number of input channels.

        out_features (int): Number of output channels.

    """
    def __init__(self, in_features, out_features):
        super().__init__()

        self.out_features = out_features

        self.conv = nn.Sequential(nn.Conv2d(in_features, in_features // 5, 1, 1, 0),
                        nn.LeakyReLU(negative_slope=0.2, inplace=True),
                        nn.Conv2d(in_features // 5, in_features // 5, 3, 1, 1),
                        nn.LeakyReLU(negative_slope=0.2, inplace=True),
                        nn.Conv2d(in_features // 5, out_features, 1, 1, 0))
        
        self.linear = nn.Conv2d(in_features, out_features,1,1,0)

    def forward(self, x, x_size):
        
        B, L, C = x.shape
        H, W = x_size
        x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
        x = self.conv(x) * self.linear(x)
        x = x.view(B, -1, H*W).permute(0,2,1).contiguous()

        return x

class Mlp(nn.Module):
    """ MLP-based Feed-Forward Network

    Args:

        in_features (int): Number of input channels.

        hidden_features (int | None): Number of hidden channels. Default: None

        out_features (int | None): Number of output channels. Default: None

        act_layer (nn.Module): Activation layer. Default: nn.GELU

        drop (float): Dropout rate. Default: 0.0

    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class dwconv(nn.Module):
    def __init__(self,hidden_features):
        super(dwconv, self).__init__()
        self.depthwise_conv = nn.Sequential(
            nn.Conv2d(hidden_features, hidden_features, kernel_size=5, stride=1, padding=2, dilation=1,
                      groups=hidden_features), nn.GELU())
        self.hidden_features = hidden_features
    def forward(self,x,x_size):
        x = x.transpose(1, 2).view(x.shape[0], self.hidden_features, x_size[0], x_size[1]).contiguous()  # b Ph*Pw c
        x = self.depthwise_conv(x)
        x = x.flatten(2).transpose(1, 2).contiguous()
        return x

class ConvFFN(nn.Module):

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.dwconv = dwconv(hidden_features=hidden_features)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)


    def forward(self, x,x_size):
        x = self.fc1(x)
        x = self.act(x)
        x = x + self.dwconv(x,x_size)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

def window_partition(x, window_size):
    """

    Args:

        x: (B, H, W, C)

        window_size (tuple): window size



    Returns:

        windows: (num_windows*B, window_size, window_size, C)

    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
    return windows


def window_reverse(windows, window_size, H, W):
    """

    Args:

        windows: (num_windows*B, window_size, window_size, C)

        window_size (tuple): Window size

        H (int): Height of image

        W (int): Width of image



    Returns:

        x: (B, H, W, C)

    """
    B = int(windows.shape[0] * (window_size[0] * window_size[1]) / (H * W))
    x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x

class DynamicPosBias(nn.Module):
    # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
    """ Dynamic Relative Position Bias.

    Args:

        dim (int): Number of input channels.

        num_heads (int): Number of heads for spatial self-correlation.

        residual (bool):  If True, use residual strage to connect conv.

    """
    def __init__(self, dim, num_heads, residual):
        super().__init__()
        self.residual = residual
        self.num_heads = num_heads
        self.pos_dim = dim // 4
        self.pos_proj = nn.Linear(2, self.pos_dim)
        self.pos1 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos2 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim)
        )
        self.pos3 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.num_heads)
        )
    def forward(self, biases):
        if self.residual:
            pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
            pos = pos + self.pos1(pos)
            pos = pos + self.pos2(pos)
            pos = self.pos3(pos)
        else:
            pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
        return pos

class SCC(nn.Module):
    """ Spatial-Channel Correlation.

    Args:

        dim (int): Number of input channels.

        base_win_size (tuple[int]): The height and width of the base window.

        window_size (tuple[int]): The height and width of the window.

        num_heads (int): Number of heads for spatial self-correlation.

        value_drop (float, optional): Dropout ratio of value. Default: 0.0

        proj_drop (float, optional): Dropout ratio of output. Default: 0.0

    """

    def __init__(self, dim, base_win_size, window_size, num_heads, value_drop=0., proj_drop=0.):

        super().__init__()
        # parameters
        self.dim = dim
        self.window_size = window_size 
        self.num_heads = num_heads

        # feature projection
        self.qv = DFE(dim, dim)
        self.proj = nn.Linear(dim, dim)

        # dropout
        self.value_drop = nn.Dropout(value_drop)
        self.proj_drop = nn.Dropout(proj_drop)

        # base window size
        min_h = min(self.window_size[0], base_win_size[0])
        min_w = min(self.window_size[1], base_win_size[1])
        self.base_win_size = (min_h, min_w)

        # normalization factor and spatial linear layer for S-SC
        head_dim = dim // (2*num_heads)
        self.scale = head_dim
        self.spatial_linear = nn.Linear(self.window_size[0]*self.window_size[1] // (self.base_win_size[0]*self.base_win_size[1]), 1)

        # define a parameter table of relative position bias
        self.H_sp, self.W_sp = self.window_size
        self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
    
    def spatial_linear_projection(self, x):
        B, num_h, L, C = x.shape
        H, W = self.window_size
        map_H, map_W = self.base_win_size

        x = x.view(B, num_h, map_H, H//map_H, map_W, W//map_W, C).permute(0,1,2,4,6,3,5).contiguous().view(B, num_h, map_H*map_W, C, -1)
        x = self.spatial_linear(x).view(B, num_h, map_H*map_W, C)
        return x
    
    def spatial_self_correlation(self, q, v):
        
        B, num_head, L, C = q.shape

        # spatial projection
        v = self.spatial_linear_projection(v)

        # compute correlation map
        corr_map = (q @ v.transpose(-2,-1)) / self.scale

        # add relative position bias
        # generate mother-set
        position_bias_h = torch.arange(1 - self.H_sp, self.H_sp, device=v.device)
        position_bias_w = torch.arange(1 - self.W_sp, self.W_sp, device=v.device)
        biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
        rpe_biases = biases.flatten(1).transpose(0, 1).contiguous().float()
        pos = self.pos(rpe_biases)

        # select position bias
        coords_h = torch.arange(self.H_sp, device=v.device)
        coords_w = torch.arange(self.W_sp, device=v.device)
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_flatten = torch.flatten(coords, 1)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        relative_coords[:, :, 0] += self.H_sp - 1
        relative_coords[:, :, 1] += self.W_sp - 1
        relative_coords[:, :, 0] *= 2 * self.W_sp - 1
        relative_position_index = relative_coords.sum(-1)
        relative_position_bias = pos[relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.base_win_size[0], self.window_size[0]//self.base_win_size[0], self.base_win_size[1], self.window_size[1]//self.base_win_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(0,1,3,5,2,4).contiguous().view(
            self.window_size[0] * self.window_size[1], self.base_win_size[0]*self.base_win_size[1], self.num_heads, -1).mean(-1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() 
        corr_map = corr_map + relative_position_bias.unsqueeze(0)

        # transformation
        v_drop = self.value_drop(v)
        x = (corr_map @ v_drop).permute(0,2,1,3).contiguous().view(B, L, -1) 

        return x
    
    def channel_self_correlation(self, q, v):
        
        B, num_head, L, C = q.shape

        # apply single head strategy
        q = q.permute(0,2,1,3).contiguous().view(B, L, num_head*C)
        v = v.permute(0,2,1,3).contiguous().view(B, L, num_head*C)

        # compute correlation map
        corr_map = (q.transpose(-2,-1) @ v) / L
        
        # transformation
        v_drop = self.value_drop(v)
        x = (corr_map @ v_drop.transpose(-2,-1)).permute(0,2,1).contiguous().view(B, L, -1)

        return x

    def forward(self, x):
        """

        Args:

            x: input features with shape of (B, H, W, C)

        """
        xB,xH,xW,xC = x.shape
        qv = self.qv(x.view(xB,-1,xC), (xH,xW)).view(xB, xH, xW, xC)

        # window partition
        qv = window_partition(qv, self.window_size)
        qv = qv.view(-1, self.window_size[0]*self.window_size[1], xC)

        # qv splitting
        B, L, C = qv.shape
        qv = qv.view(B, L, 2, self.num_heads, C // (2*self.num_heads)).permute(2,0,3,1,4).contiguous()
        q, v = qv[0], qv[1] # B, num_heads, L, C//num_heads

        # spatial self-correlation (S-SC)
        x_spatial = self.spatial_self_correlation(q, v)
        x_spatial = x_spatial.view(-1, self.window_size[0], self.window_size[1], C//2)
        x_spatial = window_reverse(x_spatial, (self.window_size[0],self.window_size[1]), xH, xW)  # xB xH xW xC

        # channel self-correlation (C-SC)
        x_channel = self.channel_self_correlation(q, v)
        x_channel = x_channel.view(-1, self.window_size[0], self.window_size[1], C//2)
        x_channel = window_reverse(x_channel, (self.window_size[0], self.window_size[1]), xH, xW) # xB xH xW xC

        # spatial-channel information fusion
        x = torch.cat([x_spatial, x_channel], -1)
        x = self.proj_drop(self.proj(x))

        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'


class HierarchicalTransformerBlock(nn.Module):
    """ Hierarchical Transformer Block.

    Args:

        dim (int): Number of input channels.

        input_resolution (tuple[int]): Input resulotion.

        num_heads (int): Number of heads for spatial self-correlation.

        base_win_size (tuple[int]): The height and width of the base window.

        window_size (tuple[int]): The height and width of the window.

        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

        drop (float, optional): Dropout rate. Default: 0.0

        value_drop (float, optional): Dropout ratio of value. Default: 0.0

        drop_path (float, optional): Stochastic depth rate. Default: 0.0

        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU

        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm

    """

    def __init__(self, dim, input_resolution, num_heads, base_win_size, window_size,

                 mlp_ratio=4., drop=0., value_drop=0., drop_path=0.,

                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size 
        self.mlp_ratio = mlp_ratio

        # check window size
        if (window_size[0] > base_win_size[0]) and (window_size[1] > base_win_size[1]):
            assert window_size[0] % base_win_size[0] == 0, "please ensure the window size is smaller than or divisible by the base window size"
            assert window_size[1] % base_win_size[1] == 0, "please ensure the window size is smaller than or divisible by the base window size"


        self.norm1 = norm_layer(dim)
        self.correlation = SCC(
            dim, base_win_size=base_win_size, window_size=self.window_size, num_heads=num_heads,
            value_drop=value_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = ConvFFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        # self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def check_image_size(self, x, win_size):
        x = x.permute(0,3,1,2).contiguous()
        _, _, h, w = x.size()
        mod_pad_h = (win_size[0] - h % win_size[0]) % win_size[0]
        mod_pad_w = (win_size[1] - w % win_size[1]) % win_size[1]

        if mod_pad_h >= h or mod_pad_w >= w:
            pad_h, pad_w = h-1, w-1
            x = F.pad(x, (0, pad_w, 0, pad_h), 'reflect')
        else:
            pad_h, pad_w = 0, 0
        
        mod_pad_h = mod_pad_h - pad_h
        mod_pad_w = mod_pad_w - pad_w
        
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
        x = x.permute(0,2,3,1).contiguous()
        return x

    def forward(self, x, x_size, win_size):
        H, W = x_size
        B, L, C = x.shape

        shortcut = x
        x = x.view(B, H, W, C)
        
        # padding
        x = self.check_image_size(x, win_size)
        _, H_pad, W_pad, _ = x.shape # shape after padding

        x = self.correlation(x) 

        # unpad
        x = x[:, :H, :W, :].contiguous()

        # norm
        x = x.view(B, H * W, C)
        x = self.norm1(x)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.norm2(self.mlp(x, x_size)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"


class PatchMerging(nn.Module):
    """ Patch Merging Layer.

    Args:

        input_resolution (tuple[int]): Resolution of input feature.

        dim (int): Number of input channels.

        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm

    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """

        x: B, H*W, C

        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"


class BasicLayer(nn.Module):
    """ A basic Hierarchical Transformer layer for one stage.



    Args:

        dim (int): Number of input channels.

        input_resolution (tuple[int]): Input resolution.

        depth (int): Number of blocks.

        num_heads (int): Number of heads for spatial self-correlation.

        base_win_size (tuple[int]): The height and width of the base window.

        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

        drop (float, optional): Dropout rate. Default: 0.0

        value_drop (float, optional): Dropout ratio of value. Default: 0.0

        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0

        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm

        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None

        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.

        hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].

    """

    def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,

                 mlp_ratio=4., drop=0., value_drop=0.,drop_path=0., norm_layer=nn.LayerNorm,

                   downsample=None, use_checkpoint=False, hier_win_ratios=[0.5,1,2,4,6,8]):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        self.win_hs = [int(base_win_size[0] * ratio) for ratio in hier_win_ratios]
        self.win_ws = [int(base_win_size[1] * ratio) for ratio in hier_win_ratios]

        # build blocks
        self.blocks = nn.ModuleList([
            HierarchicalTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, 
                                 base_win_size=base_win_size,
                                 window_size=(self.win_hs[i], self.win_ws[i]),
                                 mlp_ratio=mlp_ratio,
                                 drop=drop, value_drop=value_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, x_size):

        i = 0
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, x_size, (self.win_hs[i], self.win_ws[i]))
            else:
                x = blk(x, x_size, (self.win_hs[i], self.win_ws[i]))
            i = i + 1

        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"


class RHTB(nn.Module):
    """Residual Hierarchical Transformer Block (RHTB).

    Args:

        dim (int): Number of input channels.

        input_resolution (tuple[int]): Input resolution.

        depth (int): Number of blocks.

        num_heads (int): Number of heads for spatial self-correlation.

        base_win_size (tuple[int]): The height and width of the base window.

        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

        drop (float, optional): Dropout rate. Default: 0.0

        value_drop (float, optional): Dropout ratio of value. Default: 0.0

        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0

        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm

        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None

        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.

        img_size: Input image size.

        patch_size: Patch size.

        resi_connection: The convolutional block before residual connection.

        hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].

    """

    def __init__(self, dim, input_resolution, depth, num_heads, base_win_size,

                 mlp_ratio=4., drop=0., value_drop=0., drop_path=0., norm_layer=nn.LayerNorm, 

                 downsample=None, use_checkpoint=False, img_size=224, patch_size=4, 

                 resi_connection='1conv', hier_win_ratios=[0.5,1,2,4,6,8]):
        super(RHTB, self).__init__()

        self.dim = dim
        self.input_resolution = input_resolution

        self.residual_group = BasicLayer(dim=dim,
                                         input_resolution=input_resolution,
                                         depth=depth,
                                         num_heads=num_heads,
                                         base_win_size=base_win_size,
                                         mlp_ratio=mlp_ratio,
                                         drop=drop, value_drop=value_drop,
                                         drop_path=drop_path,
                                         norm_layer=norm_layer,
                                         downsample=downsample,
                                         use_checkpoint=use_checkpoint,
                                         hier_win_ratios=hier_win_ratios)

        if resi_connection == '1conv':
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == '3conv':
            # to save parameters and memory
            self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                      nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
                                      nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                      nn.Conv2d(dim // 4, dim, 3, 1, 1))

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
            norm_layer=None)

        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
            norm_layer=None)

    def forward(self, x, x_size):
        return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding



    Args:

        img_size (int): Image size.  Default: 224.

        patch_size (int): Patch token size. Default: 4.

        in_chans (int): Number of input image channels. Default: 3.

        embed_dim (int): Number of linear projection output channels. Default: 96.

        norm_layer (nn.Module, optional): Normalization layer. Default: None

    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x


class PatchUnEmbed(nn.Module):
    r""" Image to Patch Unembedding



    Args:

        img_size (int): Image size.  Default: 224.

        patch_size (int): Patch token size. Default: 4.

        in_chans (int): Number of input image channels. Default: 3.

        embed_dim (int): Number of linear projection output channels. Default: 96.

        norm_layer (nn.Module, optional): Normalization layer. Default: None

    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        B, HW, C = x.shape
        x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1])  # B Ph*Pw C
        return x


class Upsample(nn.Sequential):
    """Upsample module.



    Args:

        scale (int): Scale factor. Supported scales: 2^n and 3.

        num_feat (int): Channel number of intermediate features.

    """

    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
        super(Upsample, self).__init__(*m)


class UpsampleOneStep(nn.Sequential):
    """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)

       Used in lightweight SR to save parameters.



    Args:

        scale (int): Scale factor. Supported scales: 2^n and 3.

        num_feat (int): Channel number of intermediate features.



    """

    def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
        self.num_feat = num_feat
        self.input_resolution = input_resolution
        m = []
        m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
        m.append(nn.PixelShuffle(scale))
        super(UpsampleOneStep, self).__init__(*m)


class HiT_SRF(nn.Module, PyTorchModelHubMixin):
    """ HiT-SRF network.



    Args:

        img_size (int | tuple(int)): Input image size. Default 64

        patch_size (int | tuple(int)): Patch size. Default: 1

        in_chans (int): Number of input image channels. Default: 3

        embed_dim (int): Patch embedding dimension. Default: 96

        depths (tuple(int)): Depth of each Transformer block.

        num_heads (tuple(int)): Number of heads for spatial self-correlation in different layers.

        base_win_size (tuple[int]): The height and width of the base window.

        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4

        drop_rate (float): Dropout rate. Default: 0

        value_drop_rate (float): Dropout ratio of value. Default: 0.0

        drop_path_rate (float): Stochastic depth rate. Default: 0.1

        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.

        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False

        patch_norm (bool): If True, add normalization after patch embedding. Default: True

        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False

        upscale (int): Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction

        img_range (float): Image range. 1. or 255.

        upsampler (str): The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None

        resi_connection (str): The convolutional block before residual connection. '1conv'/'3conv'

        hier_win_ratios (list): hierarchical window ratios for a transformer block. Default: [0.5,1,2,4,6,8].

    """

    def __init__(self, img_size=64, patch_size=1, in_chans=3,

                 embed_dim=60, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],

                 base_win_size=[8,8], mlp_ratio=2.,

                 drop_rate=0., value_drop_rate=0., drop_path_rate=0.,

                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,

                 use_checkpoint=False, upscale=4, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv',

                 hier_win_ratios=[0.5,1,2,4,6,8],

                 **kwargs):
        super(HiT_SRF, self).__init__()
        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler
        self.base_win_size = base_win_size

        #####################################################################################################
        ################################### 1, shallow feature extraction ###################################
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        #####################################################################################################
        ################################### 2, deep feature extraction ######################################
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = embed_dim
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # merge non-overlapping patches into image
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build Residual Hierarchical Transformer blocks (RHTB)
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = RHTB(dim=embed_dim,
                         input_resolution=(patches_resolution[0],
                                           patches_resolution[1]),
                         depth=depths[i_layer],
                         num_heads=num_heads[i_layer],
                         base_win_size=base_win_size,
                         mlp_ratio=self.mlp_ratio,
                         drop=drop_rate, value_drop=value_drop_rate,
                         drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],  # no impact on SR results
                         norm_layer=norm_layer,
                         downsample=None,
                         use_checkpoint=use_checkpoint,
                         img_size=img_size,
                         patch_size=patch_size,
                         resi_connection=resi_connection,
                         hier_win_ratios=hier_win_ratios
                         )
            self.layers.append(layer)
        self.norm = norm_layer(self.num_features)

        # build the last conv layer in deep feature extraction
        if resi_connection == '1conv':
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == '3conv':
            # to save parameters and memory
            self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
                                                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                                 nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
                                                 nn.LeakyReLU(negative_slope=0.2, inplace=True),
                                                 nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))

        #####################################################################################################
        ################################ 3, high quality image reconstruction ################################
        if self.upsampler == 'pixelshuffle':
            # for classical SR
            self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
                                                      nn.LeakyReLU(inplace=True))
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
        elif self.upsampler == 'pixelshuffledirect':
            # for lightweight SR (to save parameters)
            self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
                                            (patches_resolution[0], patches_resolution[1]))
        elif self.upsampler == 'nearest+conv':
            # for real-world SR (less artifacts)
            assert self.upscale == 4, 'only support x4 now.'
            self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
                                                      nn.LeakyReLU(inplace=True))
            self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
            self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
        else:
            # for image denoising and JPEG compression artifact reduction
            self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}


    def forward_features(self, x):
        x_size = (x.shape[2], x.shape[3])
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x, x_size)

        x = self.norm(x)  # B L C
        x = self.patch_unembed(x, x_size)

        return x
    
    def infer_image(self, image_path, cuda=True):

        io_backend_opt = {'type':'disk'}
        self.file_client = FileClient(io_backend_opt.pop('type'), **io_backend_opt)

        # load lq image
        lq_path = image_path
        img_bytes = self.file_client.get(lq_path, 'lq')
        img_lq = imfrombytes(img_bytes, float32=True)

        # BGR to RGB, HWC to CHW, numpy to tensor
        x = img2tensor(img_lq, bgr2rgb=True, float32=True)[None,...]

        if cuda:
            x= x.cuda()

        out = self(x)

        if cuda:
            out = out.cpu()

        out = tensor2img(out)

        return out

    def forward(self, x):
        H, W = x.shape[2:]

        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == 'pixelshuffle':
            # for classical SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))
        elif self.upsampler == 'pixelshuffledirect':
            # for lightweight SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.upsample(x)
        elif self.upsampler == 'nearest+conv':
            # for real-world SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
            x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
            x = self.conv_last(self.lrelu(self.conv_hr(x)))
        else:
            # for image denoising and JPEG compression artifact reduction
            x_first = self.conv_first(x)
            res = self.conv_after_body(self.forward_features(x_first)) + x_first
            x = x + self.conv_last(res)

        x = x / self.img_range + self.mean

        return x[:, :, :H*self.upscale, :W*self.upscale]


if __name__ == '__main__':
    upscale = 4
    base_win_size = [8, 8]
    height = (1024 // upscale // base_win_size[0] + 1) * base_win_size[0]
    width = (720 // upscale // base_win_size[1] + 1) * base_win_size[1]
    
    ## HiT-SIR
    model = HiT_SRF(upscale=4, img_size=(height, width),
                   base_win_size=base_win_size, img_range=1., depths=[6, 6, 6, 6],
                   embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')

    params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print("params: ", params_num)