Xiaodong commited on
Commit
0a31e1e
·
verified ·
1 Parent(s): f53095a

Upload 13 files

Browse files
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  checkpoint-160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  checkpoint-160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/wangxd/models/Qwen2-VL-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.48.3",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "in_chans": 3,
40
+ "model_type": "qwen2_vl",
41
+ "spatial_patch_size": 14
42
+ },
43
+ "vision_end_token_id": 151653,
44
+ "vision_start_token_id": 151652,
45
+ "vision_token_id": 151654,
46
+ "vocab_size": 152064
47
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "temperature": 0.01,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.48.3",
14
+ "use_cache": false
15
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16582751232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
350
+ "visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
351
+ "visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
352
+ "visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
353
+ "visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
354
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
355
+ "visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
356
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
357
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
358
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
359
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
360
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
361
+ "visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
366
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
367
+ "visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
368
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
374
+ "visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
375
+ "visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
376
+ "visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
377
+ "visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
378
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
379
+ "visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
380
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
381
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
382
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
383
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
384
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
385
+ "visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
386
+ "visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
387
+ "visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
388
+ "visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
389
+ "visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
390
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
391
+ "visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
392
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
393
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
394
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
395
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
396
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
397
+ "visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
398
+ "visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
399
+ "visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
400
+ "visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
401
+ "visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
402
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
403
+ "visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
404
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
405
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
406
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
694
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
695
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
696
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
697
+ "visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
698
+ "visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
699
+ "visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
700
+ "visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
701
+ "visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
702
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
703
+ "visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
704
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
705
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
706
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
707
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
708
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
709
+ "visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
710
+ "visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
711
+ "visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
712
+ "visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
713
+ "visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
714
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
715
+ "visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
716
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
717
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
718
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
719
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
720
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
721
+ "visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
722
+ "visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
723
+ "visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
724
+ "visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
725
+ "visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
726
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
727
+ "visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
728
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
729
+ "visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
730
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
731
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
732
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
733
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
734
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
735
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
736
+ }
737
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
3
+ size 11420538
tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "left",
141
+ "processor_class": "Qwen2VLProcessor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
trainer_state.json ADDED
@@ -0,0 +1,2273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.13733905579399142,
5
+ "eval_steps": 500,
6
+ "global_step": 160,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "advantages": 1.862645149230957e-08,
13
+ "completion_length": 129.0625,
14
+ "epoch": 0.0008583690987124463,
15
+ "grad_norm": 174.6410675048828,
16
+ "kl": 4.34375,
17
+ "learning_rate": 9.991416309012877e-07,
18
+ "loss": 0.434,
19
+ "reward": 0.15625,
20
+ "reward_mean": 0.15625,
21
+ "reward_std": 0.3198433816432953,
22
+ "rewards/accuracy_reward": 0.15625,
23
+ "step": 1
24
+ },
25
+ {
26
+ "advantages": 1.30385160446167e-08,
27
+ "completion_length": 138.0625,
28
+ "epoch": 0.0017167381974248926,
29
+ "grad_norm": 332.6672668457031,
30
+ "kl": 5.21875,
31
+ "learning_rate": 9.982832618025751e-07,
32
+ "loss": 0.5223,
33
+ "reward": 0.34375,
34
+ "reward_mean": 0.34375,
35
+ "reward_std": 0.4628904461860657,
36
+ "rewards/accuracy_reward": 0.34375,
37
+ "step": 2
38
+ },
39
+ {
40
+ "advantages": 2.421438694000244e-08,
41
+ "completion_length": 117.4375,
42
+ "epoch": 0.002575107296137339,
43
+ "grad_norm": 166.6440887451172,
44
+ "kl": 3.5,
45
+ "learning_rate": 9.974248927038626e-07,
46
+ "loss": 0.3496,
47
+ "reward": 0.21875,
48
+ "reward_mean": 0.21875,
49
+ "reward_std": 0.3608423173427582,
50
+ "rewards/accuracy_reward": 0.21875,
51
+ "step": 3
52
+ },
53
+ {
54
+ "advantages": 7.450580596923828e-09,
55
+ "completion_length": 126.59375,
56
+ "epoch": 0.0034334763948497852,
57
+ "grad_norm": 111.89189910888672,
58
+ "kl": 1.5078125,
59
+ "learning_rate": 9.965665236051501e-07,
60
+ "loss": 0.1505,
61
+ "reward": 0.0625,
62
+ "reward_mean": 0.0625,
63
+ "reward_std": 0.1767766922712326,
64
+ "rewards/accuracy_reward": 0.0625,
65
+ "step": 4
66
+ },
67
+ {
68
+ "advantages": 1.4901161193847656e-08,
69
+ "completion_length": 164.875,
70
+ "epoch": 0.004291845493562232,
71
+ "grad_norm": 38.75446701049805,
72
+ "kl": 1.359375,
73
+ "learning_rate": 9.957081545064378e-07,
74
+ "loss": 0.1359,
75
+ "reward": 0.25,
76
+ "reward_mean": 0.25,
77
+ "reward_std": 0.4261348247528076,
78
+ "rewards/accuracy_reward": 0.25,
79
+ "step": 5
80
+ },
81
+ {
82
+ "advantages": 2.0489096641540527e-08,
83
+ "completion_length": 136.9375,
84
+ "epoch": 0.005150214592274678,
85
+ "grad_norm": 278.40093994140625,
86
+ "kl": 4.5,
87
+ "learning_rate": 9.948497854077253e-07,
88
+ "loss": 0.4497,
89
+ "reward": 0.1875,
90
+ "reward_mean": 0.1875,
91
+ "reward_std": 0.3945523500442505,
92
+ "rewards/accuracy_reward": 0.1875,
93
+ "step": 6
94
+ },
95
+ {
96
+ "advantages": 2.60770320892334e-08,
97
+ "completion_length": 150.8125,
98
+ "epoch": 0.006008583690987125,
99
+ "grad_norm": 189.5176544189453,
100
+ "kl": 2.75,
101
+ "learning_rate": 9.939914163090128e-07,
102
+ "loss": 0.2753,
103
+ "reward": 0.375,
104
+ "reward_mean": 0.375,
105
+ "reward_std": 0.5081326961517334,
106
+ "rewards/accuracy_reward": 0.375,
107
+ "step": 7
108
+ },
109
+ {
110
+ "advantages": 1.30385160446167e-08,
111
+ "completion_length": 135.5,
112
+ "epoch": 0.0068669527896995704,
113
+ "grad_norm": 1704.9647216796875,
114
+ "kl": 4.34375,
115
+ "learning_rate": 9.931330472103003e-07,
116
+ "loss": 0.4358,
117
+ "reward": 0.125,
118
+ "reward_mean": 0.125,
119
+ "reward_std": 0.2177756428718567,
120
+ "rewards/accuracy_reward": 0.125,
121
+ "step": 8
122
+ },
123
+ {
124
+ "advantages": 1.1175870895385742e-08,
125
+ "completion_length": 116.96875,
126
+ "epoch": 0.007725321888412017,
127
+ "grad_norm": 26.27825927734375,
128
+ "kl": 0.8671875,
129
+ "learning_rate": 9.92274678111588e-07,
130
+ "loss": 0.0868,
131
+ "reward": 0.09375,
132
+ "reward_mean": 0.09375,
133
+ "reward_std": 0.2651650309562683,
134
+ "rewards/accuracy_reward": 0.09375,
135
+ "step": 9
136
+ },
137
+ {
138
+ "advantages": -9.313225746154785e-09,
139
+ "completion_length": 105.625,
140
+ "epoch": 0.008583690987124463,
141
+ "grad_norm": 115.19660949707031,
142
+ "kl": 1.28125,
143
+ "learning_rate": 9.914163090128755e-07,
144
+ "loss": 0.1278,
145
+ "reward": 0.53125,
146
+ "reward_mean": 0.53125,
147
+ "reward_std": 0.521792471408844,
148
+ "rewards/accuracy_reward": 0.53125,
149
+ "step": 10
150
+ },
151
+ {
152
+ "advantages": 1.30385160446167e-08,
153
+ "completion_length": 125.78125,
154
+ "epoch": 0.00944206008583691,
155
+ "grad_norm": 242.439453125,
156
+ "kl": 3.75,
157
+ "learning_rate": 9.90557939914163e-07,
158
+ "loss": 0.3733,
159
+ "reward": 0.125,
160
+ "reward_mean": 0.125,
161
+ "reward_std": 0.2177756428718567,
162
+ "rewards/accuracy_reward": 0.125,
163
+ "step": 11
164
+ },
165
+ {
166
+ "advantages": 2.421438694000244e-08,
167
+ "completion_length": 140.65625,
168
+ "epoch": 0.010300429184549357,
169
+ "grad_norm": 57.61454772949219,
170
+ "kl": 1.5625,
171
+ "learning_rate": 9.896995708154506e-07,
172
+ "loss": 0.1566,
173
+ "reward": 0.21875,
174
+ "reward_mean": 0.21875,
175
+ "reward_std": 0.4218915104866028,
176
+ "rewards/accuracy_reward": 0.21875,
177
+ "step": 12
178
+ },
179
+ {
180
+ "advantages": 1.4901161193847656e-08,
181
+ "completion_length": 122.3125,
182
+ "epoch": 0.011158798283261802,
183
+ "grad_norm": 9.250263214111328,
184
+ "kl": 0.416015625,
185
+ "learning_rate": 9.888412017167381e-07,
186
+ "loss": 0.0417,
187
+ "reward": 0.125,
188
+ "reward_mean": 0.125,
189
+ "reward_std": 0.292504221200943,
190
+ "rewards/accuracy_reward": 0.125,
191
+ "step": 13
192
+ },
193
+ {
194
+ "advantages": 7.450580596923828e-09,
195
+ "completion_length": 134.34375,
196
+ "epoch": 0.01201716738197425,
197
+ "grad_norm": 29.975547790527344,
198
+ "kl": 0.76171875,
199
+ "learning_rate": 9.879828326180258e-07,
200
+ "loss": 0.0763,
201
+ "reward": 0.1875,
202
+ "reward_mean": 0.1875,
203
+ "reward_std": 0.3104073107242584,
204
+ "rewards/accuracy_reward": 0.1875,
205
+ "step": 14
206
+ },
207
+ {
208
+ "advantages": -5.587935447692871e-09,
209
+ "completion_length": 136.5,
210
+ "epoch": 0.012875536480686695,
211
+ "grad_norm": 35.626949310302734,
212
+ "kl": 0.9140625,
213
+ "learning_rate": 9.871244635193133e-07,
214
+ "loss": 0.0915,
215
+ "reward": 0.3125,
216
+ "reward_mean": 0.3125,
217
+ "reward_std": 0.3514062464237213,
218
+ "rewards/accuracy_reward": 0.3125,
219
+ "step": 15
220
+ },
221
+ {
222
+ "advantages": 2.421438694000244e-08,
223
+ "completion_length": 133.84375,
224
+ "epoch": 0.013733905579399141,
225
+ "grad_norm": 127.25942993164062,
226
+ "kl": 1.765625,
227
+ "learning_rate": 9.862660944206008e-07,
228
+ "loss": 0.176,
229
+ "reward": 0.21875,
230
+ "reward_mean": 0.21875,
231
+ "reward_std": 0.3608423173427582,
232
+ "rewards/accuracy_reward": 0.21875,
233
+ "step": 16
234
+ },
235
+ {
236
+ "advantages": 2.0489096641540527e-08,
237
+ "completion_length": 110.25,
238
+ "epoch": 0.014592274678111588,
239
+ "grad_norm": 51.83127975463867,
240
+ "kl": 0.52734375,
241
+ "learning_rate": 9.854077253218883e-07,
242
+ "loss": 0.0526,
243
+ "reward": 0.1875,
244
+ "reward_mean": 0.1875,
245
+ "reward_std": 0.3335031569004059,
246
+ "rewards/accuracy_reward": 0.1875,
247
+ "step": 17
248
+ },
249
+ {
250
+ "advantages": 1.6763806343078613e-08,
251
+ "completion_length": 132.71875,
252
+ "epoch": 0.015450643776824034,
253
+ "grad_norm": 71.73090362548828,
254
+ "kl": 1.375,
255
+ "learning_rate": 9.84549356223176e-07,
256
+ "loss": 0.1369,
257
+ "reward": 0.4375,
258
+ "reward_mean": 0.4375,
259
+ "reward_std": 0.5260357856750488,
260
+ "rewards/accuracy_reward": 0.4375,
261
+ "step": 18
262
+ },
263
+ {
264
+ "advantages": 1.4901161193847656e-08,
265
+ "completion_length": 139.96875,
266
+ "epoch": 0.01630901287553648,
267
+ "grad_norm": 47.92875289916992,
268
+ "kl": 0.92578125,
269
+ "learning_rate": 9.836909871244635e-07,
270
+ "loss": 0.0925,
271
+ "reward": 0.15625,
272
+ "reward_mean": 0.15625,
273
+ "reward_std": 0.24511480331420898,
274
+ "rewards/accuracy_reward": 0.15625,
275
+ "step": 19
276
+ },
277
+ {
278
+ "advantages": 2.60770320892334e-08,
279
+ "completion_length": 139.8125,
280
+ "epoch": 0.017167381974248927,
281
+ "grad_norm": 32.31055450439453,
282
+ "kl": 0.703125,
283
+ "learning_rate": 9.82832618025751e-07,
284
+ "loss": 0.0701,
285
+ "reward": 0.25,
286
+ "reward_mean": 0.25,
287
+ "reward_std": 0.4355512857437134,
288
+ "rewards/accuracy_reward": 0.25,
289
+ "step": 20
290
+ },
291
+ {
292
+ "advantages": 1.1175870895385742e-08,
293
+ "completion_length": 122.3125,
294
+ "epoch": 0.018025751072961373,
295
+ "grad_norm": 12.536384582519531,
296
+ "kl": 0.423828125,
297
+ "learning_rate": 9.819742489270387e-07,
298
+ "loss": 0.0424,
299
+ "reward": 0.09375,
300
+ "reward_mean": 0.09375,
301
+ "reward_std": 0.2651650309562683,
302
+ "rewards/accuracy_reward": 0.09375,
303
+ "step": 21
304
+ },
305
+ {
306
+ "advantages": 1.4901161193847656e-08,
307
+ "completion_length": 155.6875,
308
+ "epoch": 0.01888412017167382,
309
+ "grad_norm": 9.963027954101562,
310
+ "kl": 0.421875,
311
+ "learning_rate": 9.811158798283261e-07,
312
+ "loss": 0.0421,
313
+ "reward": 0.125,
314
+ "reward_mean": 0.125,
315
+ "reward_std": 0.3535533845424652,
316
+ "rewards/accuracy_reward": 0.125,
317
+ "step": 22
318
+ },
319
+ {
320
+ "advantages": 1.1175870895385742e-08,
321
+ "completion_length": 137.15625,
322
+ "epoch": 0.019742489270386267,
323
+ "grad_norm": 6.500565052032471,
324
+ "kl": 0.25,
325
+ "learning_rate": 9.802575107296136e-07,
326
+ "loss": 0.025,
327
+ "reward": 0.09375,
328
+ "reward_mean": 0.09375,
329
+ "reward_std": 0.2651650309562683,
330
+ "rewards/accuracy_reward": 0.09375,
331
+ "step": 23
332
+ },
333
+ {
334
+ "advantages": 5.587935447692871e-09,
335
+ "completion_length": 143.4375,
336
+ "epoch": 0.020600858369098713,
337
+ "grad_norm": 4.852046012878418,
338
+ "kl": 0.208984375,
339
+ "learning_rate": 9.793991416309011e-07,
340
+ "loss": 0.021,
341
+ "reward": 0.28125,
342
+ "reward_mean": 0.28125,
343
+ "reward_std": 0.3608423173427582,
344
+ "rewards/accuracy_reward": 0.28125,
345
+ "step": 24
346
+ },
347
+ {
348
+ "advantages": 1.4901161193847656e-08,
349
+ "completion_length": 130.03125,
350
+ "epoch": 0.02145922746781116,
351
+ "grad_norm": 11.683233261108398,
352
+ "kl": 0.396484375,
353
+ "learning_rate": 9.785407725321888e-07,
354
+ "loss": 0.0395,
355
+ "reward": 0.125,
356
+ "reward_mean": 0.125,
357
+ "reward_std": 0.2925041913986206,
358
+ "rewards/accuracy_reward": 0.125,
359
+ "step": 25
360
+ },
361
+ {
362
+ "advantages": 3.166496753692627e-08,
363
+ "completion_length": 150.59375,
364
+ "epoch": 0.022317596566523604,
365
+ "grad_norm": 7.088483810424805,
366
+ "kl": 0.29296875,
367
+ "learning_rate": 9.776824034334763e-07,
368
+ "loss": 0.0294,
369
+ "reward": 0.28125,
370
+ "reward_mean": 0.28125,
371
+ "reward_std": 0.4765698313713074,
372
+ "rewards/accuracy_reward": 0.28125,
373
+ "step": 26
374
+ },
375
+ {
376
+ "advantages": 2.9802322387695312e-08,
377
+ "completion_length": 125.1875,
378
+ "epoch": 0.02317596566523605,
379
+ "grad_norm": 9.142675399780273,
380
+ "kl": 0.41015625,
381
+ "learning_rate": 9.76824034334764e-07,
382
+ "loss": 0.0412,
383
+ "reward": 0.28125,
384
+ "reward_mean": 0.28125,
385
+ "reward_std": 0.4628904461860657,
386
+ "rewards/accuracy_reward": 0.28125,
387
+ "step": 27
388
+ },
389
+ {
390
+ "advantages": 1.30385160446167e-08,
391
+ "completion_length": 146.21875,
392
+ "epoch": 0.0240343347639485,
393
+ "grad_norm": 7.925714492797852,
394
+ "kl": 0.22265625,
395
+ "learning_rate": 9.759656652360515e-07,
396
+ "loss": 0.0222,
397
+ "reward": 0.375,
398
+ "reward_mean": 0.375,
399
+ "reward_std": 0.47655022144317627,
400
+ "rewards/accuracy_reward": 0.375,
401
+ "step": 28
402
+ },
403
+ {
404
+ "advantages": 1.1175870895385742e-08,
405
+ "completion_length": 156.46875,
406
+ "epoch": 0.024892703862660945,
407
+ "grad_norm": 9.395242691040039,
408
+ "kl": 0.3984375,
409
+ "learning_rate": 9.75107296137339e-07,
410
+ "loss": 0.0397,
411
+ "reward": 0.09375,
412
+ "reward_mean": 0.09375,
413
+ "reward_std": 0.2041158676147461,
414
+ "rewards/accuracy_reward": 0.09375,
415
+ "step": 29
416
+ },
417
+ {
418
+ "advantages": 2.9802322387695312e-08,
419
+ "completion_length": 148.65625,
420
+ "epoch": 0.02575107296137339,
421
+ "grad_norm": 8.077410697937012,
422
+ "kl": 0.2890625,
423
+ "learning_rate": 9.742489270386267e-07,
424
+ "loss": 0.0289,
425
+ "reward": 0.28125,
426
+ "reward_mean": 0.28125,
427
+ "reward_std": 0.4628904461860657,
428
+ "rewards/accuracy_reward": 0.28125,
429
+ "step": 30
430
+ },
431
+ {
432
+ "advantages": 1.6763806343078613e-08,
433
+ "completion_length": 137.3125,
434
+ "epoch": 0.026609442060085836,
435
+ "grad_norm": 8.573564529418945,
436
+ "kl": 0.263671875,
437
+ "learning_rate": 9.733905579399142e-07,
438
+ "loss": 0.0264,
439
+ "reward": 0.28125,
440
+ "reward_mean": 0.28125,
441
+ "reward_std": 0.378745436668396,
442
+ "rewards/accuracy_reward": 0.28125,
443
+ "step": 31
444
+ },
445
+ {
446
+ "advantages": 2.9802322387695312e-08,
447
+ "completion_length": 148.25,
448
+ "epoch": 0.027467811158798282,
449
+ "grad_norm": 6.53264045715332,
450
+ "kl": 0.265625,
451
+ "learning_rate": 9.725321888412016e-07,
452
+ "loss": 0.0265,
453
+ "reward": 0.28125,
454
+ "reward_mean": 0.28125,
455
+ "reward_std": 0.4628904461860657,
456
+ "rewards/accuracy_reward": 0.28125,
457
+ "step": 32
458
+ },
459
+ {
460
+ "advantages": 3.166496753692627e-08,
461
+ "completion_length": 133.0,
462
+ "epoch": 0.02832618025751073,
463
+ "grad_norm": 8.72734260559082,
464
+ "kl": 0.36328125,
465
+ "learning_rate": 9.716738197424891e-07,
466
+ "loss": 0.0363,
467
+ "reward": 0.3125,
468
+ "reward_mean": 0.3125,
469
+ "reward_std": 0.47655022144317627,
470
+ "rewards/accuracy_reward": 0.3125,
471
+ "step": 33
472
+ },
473
+ {
474
+ "advantages": 9.313225746154785e-09,
475
+ "completion_length": 133.3125,
476
+ "epoch": 0.029184549356223177,
477
+ "grad_norm": 11.700161933898926,
478
+ "kl": 0.30859375,
479
+ "learning_rate": 9.708154506437768e-07,
480
+ "loss": 0.031,
481
+ "reward": 0.09375,
482
+ "reward_mean": 0.09375,
483
+ "reward_std": 0.1293872892856598,
484
+ "rewards/accuracy_reward": 0.09375,
485
+ "step": 34
486
+ },
487
+ {
488
+ "advantages": 2.9802322387695312e-08,
489
+ "completion_length": 145.5625,
490
+ "epoch": 0.030042918454935622,
491
+ "grad_norm": 25.358783721923828,
492
+ "kl": 0.486328125,
493
+ "learning_rate": 9.699570815450643e-07,
494
+ "loss": 0.0486,
495
+ "reward": 0.28125,
496
+ "reward_mean": 0.28125,
497
+ "reward_std": 0.4628904461860657,
498
+ "rewards/accuracy_reward": 0.28125,
499
+ "step": 35
500
+ },
501
+ {
502
+ "advantages": 1.862645149230957e-08,
503
+ "completion_length": 132.625,
504
+ "epoch": 0.030901287553648068,
505
+ "grad_norm": 13.985993385314941,
506
+ "kl": 0.298828125,
507
+ "learning_rate": 9.690987124463518e-07,
508
+ "loss": 0.0298,
509
+ "reward": 0.15625,
510
+ "reward_mean": 0.15625,
511
+ "reward_std": 0.3808925747871399,
512
+ "rewards/accuracy_reward": 0.15625,
513
+ "step": 36
514
+ },
515
+ {
516
+ "advantages": 7.450580596923828e-09,
517
+ "completion_length": 160.90625,
518
+ "epoch": 0.03175965665236052,
519
+ "grad_norm": 18.302053451538086,
520
+ "kl": 0.447265625,
521
+ "learning_rate": 9.682403433476395e-07,
522
+ "loss": 0.0447,
523
+ "reward": 0.0625,
524
+ "reward_mean": 0.0625,
525
+ "reward_std": 0.1767766922712326,
526
+ "rewards/accuracy_reward": 0.0625,
527
+ "step": 37
528
+ },
529
+ {
530
+ "advantages": 1.1175870895385742e-08,
531
+ "completion_length": 144.875,
532
+ "epoch": 0.03261802575107296,
533
+ "grad_norm": 4.443456172943115,
534
+ "kl": 0.248046875,
535
+ "learning_rate": 9.67381974248927e-07,
536
+ "loss": 0.0247,
537
+ "reward": 0.09375,
538
+ "reward_mean": 0.09375,
539
+ "reward_std": 0.2041158676147461,
540
+ "rewards/accuracy_reward": 0.09375,
541
+ "step": 38
542
+ },
543
+ {
544
+ "advantages": 1.6763806343078613e-08,
545
+ "completion_length": 157.96875,
546
+ "epoch": 0.03347639484978541,
547
+ "grad_norm": 6.555863380432129,
548
+ "kl": 0.279296875,
549
+ "learning_rate": 9.665236051502147e-07,
550
+ "loss": 0.0279,
551
+ "reward": 0.15625,
552
+ "reward_mean": 0.15625,
553
+ "reward_std": 0.3061639666557312,
554
+ "rewards/accuracy_reward": 0.15625,
555
+ "step": 39
556
+ },
557
+ {
558
+ "advantages": 3.725290298461914e-09,
559
+ "completion_length": 131.03125,
560
+ "epoch": 0.034334763948497854,
561
+ "grad_norm": 7.260156631469727,
562
+ "kl": 0.1865234375,
563
+ "learning_rate": 9.656652360515022e-07,
564
+ "loss": 0.0186,
565
+ "reward": 0.28125,
566
+ "reward_mean": 0.28125,
567
+ "reward_std": 0.35564959049224854,
568
+ "rewards/accuracy_reward": 0.28125,
569
+ "step": 40
570
+ },
571
+ {
572
+ "advantages": 1.6763806343078613e-08,
573
+ "completion_length": 155.75,
574
+ "epoch": 0.0351931330472103,
575
+ "grad_norm": 9.163714408874512,
576
+ "kl": 0.19140625,
577
+ "learning_rate": 9.648068669527897e-07,
578
+ "loss": 0.0191,
579
+ "reward": 0.15625,
580
+ "reward_mean": 0.15625,
581
+ "reward_std": 0.3061639666557312,
582
+ "rewards/accuracy_reward": 0.15625,
583
+ "step": 41
584
+ },
585
+ {
586
+ "advantages": 1.862645149230957e-08,
587
+ "completion_length": 153.09375,
588
+ "epoch": 0.036051502145922745,
589
+ "grad_norm": 9.94912052154541,
590
+ "kl": 0.345703125,
591
+ "learning_rate": 9.639484978540771e-07,
592
+ "loss": 0.0345,
593
+ "reward": 0.15625,
594
+ "reward_mean": 0.15625,
595
+ "reward_std": 0.3198433816432953,
596
+ "rewards/accuracy_reward": 0.15625,
597
+ "step": 42
598
+ },
599
+ {
600
+ "advantages": 2.0489096641540527e-08,
601
+ "completion_length": 163.28125,
602
+ "epoch": 0.03690987124463519,
603
+ "grad_norm": 4.065970420837402,
604
+ "kl": 0.2119140625,
605
+ "learning_rate": 9.630901287553648e-07,
606
+ "loss": 0.0212,
607
+ "reward": 0.1875,
608
+ "reward_mean": 0.1875,
609
+ "reward_std": 0.3335031569004059,
610
+ "rewards/accuracy_reward": 0.1875,
611
+ "step": 43
612
+ },
613
+ {
614
+ "advantages": 2.60770320892334e-08,
615
+ "completion_length": 149.03125,
616
+ "epoch": 0.03776824034334764,
617
+ "grad_norm": 6.335684776306152,
618
+ "kl": 0.330078125,
619
+ "learning_rate": 9.622317596566523e-07,
620
+ "loss": 0.033,
621
+ "reward": 0.25,
622
+ "reward_mean": 0.25,
623
+ "reward_std": 0.3745020925998688,
624
+ "rewards/accuracy_reward": 0.25,
625
+ "step": 44
626
+ },
627
+ {
628
+ "advantages": 1.862645149230957e-08,
629
+ "completion_length": 168.0625,
630
+ "epoch": 0.03862660944206009,
631
+ "grad_norm": 5.854466438293457,
632
+ "kl": 0.224609375,
633
+ "learning_rate": 9.613733905579398e-07,
634
+ "loss": 0.0225,
635
+ "reward": 0.15625,
636
+ "reward_mean": 0.15625,
637
+ "reward_std": 0.3808925747871399,
638
+ "rewards/accuracy_reward": 0.15625,
639
+ "step": 45
640
+ },
641
+ {
642
+ "advantages": 2.0489096641540527e-08,
643
+ "completion_length": 159.3125,
644
+ "epoch": 0.039484978540772535,
645
+ "grad_norm": 59.691341400146484,
646
+ "kl": 0.67578125,
647
+ "learning_rate": 9.605150214592275e-07,
648
+ "loss": 0.0677,
649
+ "reward": 0.1875,
650
+ "reward_mean": 0.1875,
651
+ "reward_std": 0.3945523500442505,
652
+ "rewards/accuracy_reward": 0.1875,
653
+ "step": 46
654
+ },
655
+ {
656
+ "advantages": 2.60770320892334e-08,
657
+ "completion_length": 149.21875,
658
+ "epoch": 0.04034334763948498,
659
+ "grad_norm": 5.02371883392334,
660
+ "kl": 0.1845703125,
661
+ "learning_rate": 9.59656652360515e-07,
662
+ "loss": 0.0185,
663
+ "reward": 0.21875,
664
+ "reward_mean": 0.21875,
665
+ "reward_std": 0.4355708956718445,
666
+ "rewards/accuracy_reward": 0.21875,
667
+ "step": 47
668
+ },
669
+ {
670
+ "advantages": 2.421438694000244e-08,
671
+ "completion_length": 167.875,
672
+ "epoch": 0.041201716738197426,
673
+ "grad_norm": 4.878015041351318,
674
+ "kl": 0.185546875,
675
+ "learning_rate": 9.587982832618025e-07,
676
+ "loss": 0.0185,
677
+ "reward": 0.21875,
678
+ "reward_mean": 0.21875,
679
+ "reward_std": 0.4218915104866028,
680
+ "rewards/accuracy_reward": 0.21875,
681
+ "step": 48
682
+ },
683
+ {
684
+ "advantages": 2.0489096641540527e-08,
685
+ "completion_length": 152.96875,
686
+ "epoch": 0.04206008583690987,
687
+ "grad_norm": 5.698736667633057,
688
+ "kl": 0.234375,
689
+ "learning_rate": 9.5793991416309e-07,
690
+ "loss": 0.0234,
691
+ "reward": 0.21875,
692
+ "reward_mean": 0.21875,
693
+ "reward_std": 0.3471629321575165,
694
+ "rewards/accuracy_reward": 0.21875,
695
+ "step": 49
696
+ },
697
+ {
698
+ "advantages": 7.450580596923828e-09,
699
+ "completion_length": 157.8125,
700
+ "epoch": 0.04291845493562232,
701
+ "grad_norm": 5.776604652404785,
702
+ "kl": 0.1474609375,
703
+ "learning_rate": 9.570815450643777e-07,
704
+ "loss": 0.0148,
705
+ "reward": 0.3125,
706
+ "reward_mean": 0.3125,
707
+ "reward_std": 0.3745020925998688,
708
+ "rewards/accuracy_reward": 0.3125,
709
+ "step": 50
710
+ },
711
+ {
712
+ "advantages": 2.2351741790771484e-08,
713
+ "completion_length": 148.78125,
714
+ "epoch": 0.04377682403433476,
715
+ "grad_norm": 4.41421365737915,
716
+ "kl": 0.169921875,
717
+ "learning_rate": 9.562231759656652e-07,
718
+ "loss": 0.0169,
719
+ "reward": 0.21875,
720
+ "reward_mean": 0.21875,
721
+ "reward_std": 0.3608423173427582,
722
+ "rewards/accuracy_reward": 0.21875,
723
+ "step": 51
724
+ },
725
+ {
726
+ "advantages": 1.1175870895385742e-08,
727
+ "completion_length": 146.90625,
728
+ "epoch": 0.04463519313304721,
729
+ "grad_norm": 4.667245864868164,
730
+ "kl": 0.189453125,
731
+ "learning_rate": 9.553648068669528e-07,
732
+ "loss": 0.0189,
733
+ "reward": 0.21875,
734
+ "reward_mean": 0.21875,
735
+ "reward_std": 0.3377464711666107,
736
+ "rewards/accuracy_reward": 0.21875,
737
+ "step": 52
738
+ },
739
+ {
740
+ "advantages": -3.725290298461914e-09,
741
+ "completion_length": 158.625,
742
+ "epoch": 0.045493562231759654,
743
+ "grad_norm": 4.415360927581787,
744
+ "kl": 0.1259765625,
745
+ "learning_rate": 9.545064377682403e-07,
746
+ "loss": 0.0126,
747
+ "reward": 0.46875,
748
+ "reward_mean": 0.46875,
749
+ "reward_std": 0.3808925747871399,
750
+ "rewards/accuracy_reward": 0.46875,
751
+ "step": 53
752
+ },
753
+ {
754
+ "advantages": 1.4901161193847656e-08,
755
+ "completion_length": 155.65625,
756
+ "epoch": 0.0463519313304721,
757
+ "grad_norm": 12.489053726196289,
758
+ "kl": 0.37109375,
759
+ "learning_rate": 9.536480686695278e-07,
760
+ "loss": 0.0371,
761
+ "reward": 0.125,
762
+ "reward_mean": 0.125,
763
+ "reward_std": 0.2925041913986206,
764
+ "rewards/accuracy_reward": 0.125,
765
+ "step": 54
766
+ },
767
+ {
768
+ "advantages": 2.9802322387695312e-08,
769
+ "completion_length": 172.9375,
770
+ "epoch": 0.04721030042918455,
771
+ "grad_norm": 5.111673831939697,
772
+ "kl": 0.173828125,
773
+ "learning_rate": 9.527896995708154e-07,
774
+ "loss": 0.0174,
775
+ "reward": 0.25,
776
+ "reward_mean": 0.25,
777
+ "reward_std": 0.4629100561141968,
778
+ "rewards/accuracy_reward": 0.25,
779
+ "step": 55
780
+ },
781
+ {
782
+ "advantages": 2.9802322387695312e-08,
783
+ "completion_length": 153.4375,
784
+ "epoch": 0.048068669527897,
785
+ "grad_norm": 149.73927307128906,
786
+ "kl": 2.0,
787
+ "learning_rate": 9.519313304721029e-07,
788
+ "loss": 0.2008,
789
+ "reward": 0.28125,
790
+ "reward_mean": 0.28125,
791
+ "reward_std": 0.4628904461860657,
792
+ "rewards/accuracy_reward": 0.28125,
793
+ "step": 56
794
+ },
795
+ {
796
+ "advantages": 1.4901161193847656e-08,
797
+ "completion_length": 133.0625,
798
+ "epoch": 0.048927038626609444,
799
+ "grad_norm": 13.399458885192871,
800
+ "kl": 0.37109375,
801
+ "learning_rate": 9.510729613733906e-07,
802
+ "loss": 0.0371,
803
+ "reward": 0.15625,
804
+ "reward_mean": 0.15625,
805
+ "reward_std": 0.3061639964580536,
806
+ "rewards/accuracy_reward": 0.15625,
807
+ "step": 57
808
+ },
809
+ {
810
+ "advantages": 1.6763806343078613e-08,
811
+ "completion_length": 163.125,
812
+ "epoch": 0.04978540772532189,
813
+ "grad_norm": 6.9010210037231445,
814
+ "kl": 0.294921875,
815
+ "learning_rate": 9.502145922746781e-07,
816
+ "loss": 0.0295,
817
+ "reward": 0.15625,
818
+ "reward_mean": 0.15625,
819
+ "reward_std": 0.3061639964580536,
820
+ "rewards/accuracy_reward": 0.15625,
821
+ "step": 58
822
+ },
823
+ {
824
+ "advantages": 1.6763806343078613e-08,
825
+ "completion_length": 146.90625,
826
+ "epoch": 0.050643776824034335,
827
+ "grad_norm": 6.625538349151611,
828
+ "kl": 0.166015625,
829
+ "learning_rate": 9.493562231759657e-07,
830
+ "loss": 0.0166,
831
+ "reward": 0.28125,
832
+ "reward_mean": 0.28125,
833
+ "reward_std": 0.4397946000099182,
834
+ "rewards/accuracy_reward": 0.28125,
835
+ "step": 59
836
+ },
837
+ {
838
+ "advantages": 3.725290298461914e-09,
839
+ "completion_length": 151.03125,
840
+ "epoch": 0.05150214592274678,
841
+ "grad_norm": 9.018912315368652,
842
+ "kl": 0.169921875,
843
+ "learning_rate": 9.484978540772532e-07,
844
+ "loss": 0.017,
845
+ "reward": 0.28125,
846
+ "reward_mean": 0.28125,
847
+ "reward_std": 0.3471629321575165,
848
+ "rewards/accuracy_reward": 0.28125,
849
+ "step": 60
850
+ },
851
+ {
852
+ "advantages": 1.30385160446167e-08,
853
+ "completion_length": 121.25,
854
+ "epoch": 0.05236051502145923,
855
+ "grad_norm": 24.219348907470703,
856
+ "kl": 0.47265625,
857
+ "learning_rate": 9.476394849785408e-07,
858
+ "loss": 0.0473,
859
+ "reward": 0.125,
860
+ "reward_mean": 0.125,
861
+ "reward_std": 0.2177756428718567,
862
+ "rewards/accuracy_reward": 0.125,
863
+ "step": 61
864
+ },
865
+ {
866
+ "advantages": 1.4901161193847656e-08,
867
+ "completion_length": 142.5625,
868
+ "epoch": 0.05321888412017167,
869
+ "grad_norm": 5.040563106536865,
870
+ "kl": 0.201171875,
871
+ "learning_rate": 9.467811158798282e-07,
872
+ "loss": 0.0201,
873
+ "reward": 0.125,
874
+ "reward_mean": 0.125,
875
+ "reward_std": 0.2925041913986206,
876
+ "rewards/accuracy_reward": 0.125,
877
+ "step": 62
878
+ },
879
+ {
880
+ "advantages": -1.862645149230957e-09,
881
+ "completion_length": 145.53125,
882
+ "epoch": 0.05407725321888412,
883
+ "grad_norm": 9.56372356414795,
884
+ "kl": 0.279296875,
885
+ "learning_rate": 9.459227467811158e-07,
886
+ "loss": 0.0279,
887
+ "reward": 0.4375,
888
+ "reward_mean": 0.4375,
889
+ "reward_std": 0.49022960662841797,
890
+ "rewards/accuracy_reward": 0.4375,
891
+ "step": 63
892
+ },
893
+ {
894
+ "advantages": 7.450580596923828e-09,
895
+ "completion_length": 110.75,
896
+ "epoch": 0.054935622317596564,
897
+ "grad_norm": 5.647745132446289,
898
+ "kl": 0.1884765625,
899
+ "learning_rate": 9.450643776824034e-07,
900
+ "loss": 0.0189,
901
+ "reward": 0.3125,
902
+ "reward_mean": 0.3125,
903
+ "reward_std": 0.4082317352294922,
904
+ "rewards/accuracy_reward": 0.3125,
905
+ "step": 64
906
+ },
907
+ {
908
+ "advantages": -1.30385160446167e-08,
909
+ "completion_length": 152.0,
910
+ "epoch": 0.055793991416309016,
911
+ "grad_norm": 5.315371513366699,
912
+ "kl": 0.17578125,
913
+ "learning_rate": 9.442060085836909e-07,
914
+ "loss": 0.0176,
915
+ "reward": 0.46875,
916
+ "reward_mean": 0.46875,
917
+ "reward_std": 0.4807935357093811,
918
+ "rewards/accuracy_reward": 0.46875,
919
+ "step": 65
920
+ },
921
+ {
922
+ "advantages": 1.6763806343078613e-08,
923
+ "completion_length": 117.6875,
924
+ "epoch": 0.05665236051502146,
925
+ "grad_norm": 4.9794840812683105,
926
+ "kl": 0.2275390625,
927
+ "learning_rate": 9.433476394849785e-07,
928
+ "loss": 0.0228,
929
+ "reward": 0.28125,
930
+ "reward_mean": 0.28125,
931
+ "reward_std": 0.378745436668396,
932
+ "rewards/accuracy_reward": 0.28125,
933
+ "step": 66
934
+ },
935
+ {
936
+ "advantages": 2.9802322387695312e-08,
937
+ "completion_length": 140.15625,
938
+ "epoch": 0.05751072961373391,
939
+ "grad_norm": 4.917365074157715,
940
+ "kl": 0.171875,
941
+ "learning_rate": 9.42489270386266e-07,
942
+ "loss": 0.0172,
943
+ "reward": 0.28125,
944
+ "reward_mean": 0.28125,
945
+ "reward_std": 0.4628904461860657,
946
+ "rewards/accuracy_reward": 0.28125,
947
+ "step": 67
948
+ },
949
+ {
950
+ "advantages": 1.1175870895385742e-08,
951
+ "completion_length": 134.09375,
952
+ "epoch": 0.05836909871244635,
953
+ "grad_norm": 4.92598819732666,
954
+ "kl": 0.1640625,
955
+ "learning_rate": 9.416309012875536e-07,
956
+ "loss": 0.0164,
957
+ "reward": 0.34375,
958
+ "reward_mean": 0.34375,
959
+ "reward_std": 0.4628904461860657,
960
+ "rewards/accuracy_reward": 0.34375,
961
+ "step": 68
962
+ },
963
+ {
964
+ "advantages": 1.4901161193847656e-08,
965
+ "completion_length": 134.0625,
966
+ "epoch": 0.0592274678111588,
967
+ "grad_norm": 11.736459732055664,
968
+ "kl": 0.44921875,
969
+ "learning_rate": 9.407725321888411e-07,
970
+ "loss": 0.0449,
971
+ "reward": 0.25,
972
+ "reward_mean": 0.25,
973
+ "reward_std": 0.3650856614112854,
974
+ "rewards/accuracy_reward": 0.25,
975
+ "step": 69
976
+ },
977
+ {
978
+ "advantages": 2.2351741790771484e-08,
979
+ "completion_length": 131.5,
980
+ "epoch": 0.060085836909871244,
981
+ "grad_norm": 21.64668083190918,
982
+ "kl": 0.47265625,
983
+ "learning_rate": 9.399141630901288e-07,
984
+ "loss": 0.0474,
985
+ "reward": 0.21875,
986
+ "reward_mean": 0.21875,
987
+ "reward_std": 0.4218915104866028,
988
+ "rewards/accuracy_reward": 0.21875,
989
+ "step": 70
990
+ },
991
+ {
992
+ "advantages": 2.0489096641540527e-08,
993
+ "completion_length": 137.1875,
994
+ "epoch": 0.06094420600858369,
995
+ "grad_norm": 4.1953444480896,
996
+ "kl": 0.1826171875,
997
+ "learning_rate": 9.390557939914163e-07,
998
+ "loss": 0.0182,
999
+ "reward": 0.1875,
1000
+ "reward_mean": 0.1875,
1001
+ "reward_std": 0.3335031569004059,
1002
+ "rewards/accuracy_reward": 0.1875,
1003
+ "step": 71
1004
+ },
1005
+ {
1006
+ "advantages": 3.725290298461914e-09,
1007
+ "completion_length": 138.46875,
1008
+ "epoch": 0.061802575107296136,
1009
+ "grad_norm": 54.577999114990234,
1010
+ "kl": 0.73828125,
1011
+ "learning_rate": 9.381974248927038e-07,
1012
+ "loss": 0.0742,
1013
+ "reward": 0.40625,
1014
+ "reward_mean": 0.40625,
1015
+ "reward_std": 0.4807935357093811,
1016
+ "rewards/accuracy_reward": 0.40625,
1017
+ "step": 72
1018
+ },
1019
+ {
1020
+ "advantages": 0.0,
1021
+ "completion_length": 148.0,
1022
+ "epoch": 0.06266094420600858,
1023
+ "grad_norm": 24.432819366455078,
1024
+ "kl": 0.1826171875,
1025
+ "learning_rate": 9.373390557939914e-07,
1026
+ "loss": 0.0183,
1027
+ "reward": 0.25,
1028
+ "reward_mean": 0.25,
1029
+ "reward_std": 0.2587745785713196,
1030
+ "rewards/accuracy_reward": 0.25,
1031
+ "step": 73
1032
+ },
1033
+ {
1034
+ "advantages": 2.421438694000244e-08,
1035
+ "completion_length": 145.84375,
1036
+ "epoch": 0.06351931330472103,
1037
+ "grad_norm": 5.361104965209961,
1038
+ "kl": 0.150390625,
1039
+ "learning_rate": 9.364806866952789e-07,
1040
+ "loss": 0.015,
1041
+ "reward": 0.21875,
1042
+ "reward_mean": 0.21875,
1043
+ "reward_std": 0.4218915104866028,
1044
+ "rewards/accuracy_reward": 0.21875,
1045
+ "step": 74
1046
+ },
1047
+ {
1048
+ "advantages": 1.862645149230957e-08,
1049
+ "completion_length": 148.625,
1050
+ "epoch": 0.06437768240343347,
1051
+ "grad_norm": 4.662086009979248,
1052
+ "kl": 0.1630859375,
1053
+ "learning_rate": 9.356223175965665e-07,
1054
+ "loss": 0.0163,
1055
+ "reward": 0.28125,
1056
+ "reward_mean": 0.28125,
1057
+ "reward_std": 0.4534739851951599,
1058
+ "rewards/accuracy_reward": 0.28125,
1059
+ "step": 75
1060
+ },
1061
+ {
1062
+ "advantages": 1.30385160446167e-08,
1063
+ "completion_length": 138.375,
1064
+ "epoch": 0.06523605150214593,
1065
+ "grad_norm": 17.23464012145996,
1066
+ "kl": 0.404296875,
1067
+ "learning_rate": 9.34763948497854e-07,
1068
+ "loss": 0.0406,
1069
+ "reward": 0.125,
1070
+ "reward_mean": 0.125,
1071
+ "reward_std": 0.2177756428718567,
1072
+ "rewards/accuracy_reward": 0.125,
1073
+ "step": 76
1074
+ },
1075
+ {
1076
+ "advantages": 3.166496753692627e-08,
1077
+ "completion_length": 161.4375,
1078
+ "epoch": 0.06609442060085836,
1079
+ "grad_norm": 4.420433521270752,
1080
+ "kl": 0.162109375,
1081
+ "learning_rate": 9.339055793991416e-07,
1082
+ "loss": 0.0162,
1083
+ "reward": 0.3125,
1084
+ "reward_mean": 0.3125,
1085
+ "reward_std": 0.49022960662841797,
1086
+ "rewards/accuracy_reward": 0.3125,
1087
+ "step": 77
1088
+ },
1089
+ {
1090
+ "advantages": 2.2351741790771484e-08,
1091
+ "completion_length": 145.125,
1092
+ "epoch": 0.06695278969957082,
1093
+ "grad_norm": 11.806068420410156,
1094
+ "kl": 0.294921875,
1095
+ "learning_rate": 9.330472103004291e-07,
1096
+ "loss": 0.0294,
1097
+ "reward": 0.1875,
1098
+ "reward_mean": 0.1875,
1099
+ "reward_std": 0.4082317352294922,
1100
+ "rewards/accuracy_reward": 0.1875,
1101
+ "step": 78
1102
+ },
1103
+ {
1104
+ "advantages": 9.313225746154785e-09,
1105
+ "completion_length": 146.21875,
1106
+ "epoch": 0.06781115879828326,
1107
+ "grad_norm": 5.149102210998535,
1108
+ "kl": 0.201171875,
1109
+ "learning_rate": 9.321888412017167e-07,
1110
+ "loss": 0.0201,
1111
+ "reward": 0.34375,
1112
+ "reward_mean": 0.34375,
1113
+ "reward_std": 0.3966485261917114,
1114
+ "rewards/accuracy_reward": 0.34375,
1115
+ "step": 79
1116
+ },
1117
+ {
1118
+ "advantages": 1.6763806343078613e-08,
1119
+ "completion_length": 133.0,
1120
+ "epoch": 0.06866952789699571,
1121
+ "grad_norm": 4.339179992675781,
1122
+ "kl": 0.232421875,
1123
+ "learning_rate": 9.313304721030042e-07,
1124
+ "loss": 0.0233,
1125
+ "reward": 0.15625,
1126
+ "reward_mean": 0.15625,
1127
+ "reward_std": 0.24511480331420898,
1128
+ "rewards/accuracy_reward": 0.15625,
1129
+ "step": 80
1130
+ },
1131
+ {
1132
+ "advantages": 7.450580596923828e-09,
1133
+ "completion_length": 150.8125,
1134
+ "epoch": 0.06952789699570816,
1135
+ "grad_norm": 7.417867183685303,
1136
+ "kl": 0.166015625,
1137
+ "learning_rate": 9.304721030042918e-07,
1138
+ "loss": 0.0166,
1139
+ "reward": 0.28125,
1140
+ "reward_mean": 0.28125,
1141
+ "reward_std": 0.3608423173427582,
1142
+ "rewards/accuracy_reward": 0.28125,
1143
+ "step": 81
1144
+ },
1145
+ {
1146
+ "advantages": 1.862645149230957e-08,
1147
+ "completion_length": 150.1875,
1148
+ "epoch": 0.0703862660944206,
1149
+ "grad_norm": 4.655648708343506,
1150
+ "kl": 0.1748046875,
1151
+ "learning_rate": 9.296137339055793e-07,
1152
+ "loss": 0.0175,
1153
+ "reward": 0.15625,
1154
+ "reward_mean": 0.15625,
1155
+ "reward_std": 0.3198433816432953,
1156
+ "rewards/accuracy_reward": 0.15625,
1157
+ "step": 82
1158
+ },
1159
+ {
1160
+ "advantages": 1.30385160446167e-08,
1161
+ "completion_length": 144.1875,
1162
+ "epoch": 0.07124463519313305,
1163
+ "grad_norm": 6.301512241363525,
1164
+ "kl": 0.140625,
1165
+ "learning_rate": 9.287553648068669e-07,
1166
+ "loss": 0.014,
1167
+ "reward": 0.375,
1168
+ "reward_mean": 0.375,
1169
+ "reward_std": 0.48503684997558594,
1170
+ "rewards/accuracy_reward": 0.375,
1171
+ "step": 83
1172
+ },
1173
+ {
1174
+ "advantages": 7.450580596923828e-09,
1175
+ "completion_length": 155.75,
1176
+ "epoch": 0.07210300429184549,
1177
+ "grad_norm": 4.552245616912842,
1178
+ "kl": 0.1494140625,
1179
+ "learning_rate": 9.278969957081545e-07,
1180
+ "loss": 0.015,
1181
+ "reward": 0.46875,
1182
+ "reward_mean": 0.46875,
1183
+ "reward_std": 0.5302791595458984,
1184
+ "rewards/accuracy_reward": 0.46875,
1185
+ "step": 84
1186
+ },
1187
+ {
1188
+ "advantages": 1.862645149230957e-08,
1189
+ "completion_length": 163.59375,
1190
+ "epoch": 0.07296137339055794,
1191
+ "grad_norm": 5.0817060470581055,
1192
+ "kl": 0.1953125,
1193
+ "learning_rate": 9.27038626609442e-07,
1194
+ "loss": 0.0195,
1195
+ "reward": 0.28125,
1196
+ "reward_mean": 0.28125,
1197
+ "reward_std": 0.4534739851951599,
1198
+ "rewards/accuracy_reward": 0.28125,
1199
+ "step": 85
1200
+ },
1201
+ {
1202
+ "advantages": 7.450580596923828e-09,
1203
+ "completion_length": 167.5,
1204
+ "epoch": 0.07381974248927038,
1205
+ "grad_norm": 3.2791318893432617,
1206
+ "kl": 0.16796875,
1207
+ "learning_rate": 9.261802575107296e-07,
1208
+ "loss": 0.0168,
1209
+ "reward": 0.0625,
1210
+ "reward_mean": 0.0625,
1211
+ "reward_std": 0.1767766922712326,
1212
+ "rewards/accuracy_reward": 0.0625,
1213
+ "step": 86
1214
+ },
1215
+ {
1216
+ "advantages": 5.587935447692871e-09,
1217
+ "completion_length": 152.03125,
1218
+ "epoch": 0.07467811158798283,
1219
+ "grad_norm": 5.571934700012207,
1220
+ "kl": 0.2421875,
1221
+ "learning_rate": 9.253218884120171e-07,
1222
+ "loss": 0.0242,
1223
+ "reward": 0.28125,
1224
+ "reward_mean": 0.28125,
1225
+ "reward_std": 0.3608423173427582,
1226
+ "rewards/accuracy_reward": 0.28125,
1227
+ "step": 87
1228
+ },
1229
+ {
1230
+ "advantages": 1.862645149230957e-08,
1231
+ "completion_length": 171.15625,
1232
+ "epoch": 0.07553648068669527,
1233
+ "grad_norm": 4.619121074676514,
1234
+ "kl": 0.2109375,
1235
+ "learning_rate": 9.244635193133047e-07,
1236
+ "loss": 0.0211,
1237
+ "reward": 0.15625,
1238
+ "reward_mean": 0.15625,
1239
+ "reward_std": 0.3808925747871399,
1240
+ "rewards/accuracy_reward": 0.15625,
1241
+ "step": 88
1242
+ },
1243
+ {
1244
+ "advantages": 3.725290298461914e-09,
1245
+ "completion_length": 153.03125,
1246
+ "epoch": 0.07639484978540773,
1247
+ "grad_norm": 4.043124198913574,
1248
+ "kl": 0.13671875,
1249
+ "learning_rate": 9.236051502145923e-07,
1250
+ "loss": 0.0137,
1251
+ "reward": 0.28125,
1252
+ "reward_mean": 0.28125,
1253
+ "reward_std": 0.3471629321575165,
1254
+ "rewards/accuracy_reward": 0.28125,
1255
+ "step": 89
1256
+ },
1257
+ {
1258
+ "advantages": 3.725290298461914e-09,
1259
+ "completion_length": 147.53125,
1260
+ "epoch": 0.07725321888412018,
1261
+ "grad_norm": 2.962092638015747,
1262
+ "kl": 0.1513671875,
1263
+ "learning_rate": 9.227467811158798e-07,
1264
+ "loss": 0.0152,
1265
+ "reward": 0.15625,
1266
+ "reward_mean": 0.15625,
1267
+ "reward_std": 0.22201895713806152,
1268
+ "rewards/accuracy_reward": 0.15625,
1269
+ "step": 90
1270
+ },
1271
+ {
1272
+ "advantages": 3.3527612686157227e-08,
1273
+ "completion_length": 176.9375,
1274
+ "epoch": 0.07811158798283262,
1275
+ "grad_norm": 5.911281585693359,
1276
+ "kl": 0.1484375,
1277
+ "learning_rate": 9.218884120171674e-07,
1278
+ "loss": 0.0148,
1279
+ "reward": 0.3125,
1280
+ "reward_mean": 0.3125,
1281
+ "reward_std": 0.49022960662841797,
1282
+ "rewards/accuracy_reward": 0.3125,
1283
+ "step": 91
1284
+ },
1285
+ {
1286
+ "advantages": 0.0,
1287
+ "completion_length": 160.875,
1288
+ "epoch": 0.07896995708154507,
1289
+ "grad_norm": 3.9937198162078857,
1290
+ "kl": 0.173828125,
1291
+ "learning_rate": 9.210300429184548e-07,
1292
+ "loss": 0.0174,
1293
+ "reward": 0.25,
1294
+ "reward_mean": 0.25,
1295
+ "reward_std": 0.2925041913986206,
1296
+ "rewards/accuracy_reward": 0.25,
1297
+ "step": 92
1298
+ },
1299
+ {
1300
+ "advantages": 1.1175870895385742e-08,
1301
+ "completion_length": 167.0,
1302
+ "epoch": 0.07982832618025751,
1303
+ "grad_norm": 3.8715927600860596,
1304
+ "kl": 0.134765625,
1305
+ "learning_rate": 9.201716738197424e-07,
1306
+ "loss": 0.0135,
1307
+ "reward": 0.25,
1308
+ "reward_mean": 0.25,
1309
+ "reward_std": 0.3514062464237213,
1310
+ "rewards/accuracy_reward": 0.25,
1311
+ "step": 93
1312
+ },
1313
+ {
1314
+ "advantages": 3.166496753692627e-08,
1315
+ "completion_length": 155.53125,
1316
+ "epoch": 0.08068669527896996,
1317
+ "grad_norm": 4.316589832305908,
1318
+ "kl": 0.1640625,
1319
+ "learning_rate": 9.193133047210299e-07,
1320
+ "loss": 0.0164,
1321
+ "reward": 0.28125,
1322
+ "reward_mean": 0.28125,
1323
+ "reward_std": 0.4765698313713074,
1324
+ "rewards/accuracy_reward": 0.28125,
1325
+ "step": 94
1326
+ },
1327
+ {
1328
+ "advantages": 2.60770320892334e-08,
1329
+ "completion_length": 158.15625,
1330
+ "epoch": 0.0815450643776824,
1331
+ "grad_norm": 4.352808952331543,
1332
+ "kl": 0.1416015625,
1333
+ "learning_rate": 9.184549356223176e-07,
1334
+ "loss": 0.0142,
1335
+ "reward": 0.25,
1336
+ "reward_mean": 0.25,
1337
+ "reward_std": 0.4355512857437134,
1338
+ "rewards/accuracy_reward": 0.25,
1339
+ "step": 95
1340
+ },
1341
+ {
1342
+ "advantages": 1.6763806343078613e-08,
1343
+ "completion_length": 142.0625,
1344
+ "epoch": 0.08240343347639485,
1345
+ "grad_norm": 6.171362400054932,
1346
+ "kl": 0.1787109375,
1347
+ "learning_rate": 9.175965665236051e-07,
1348
+ "loss": 0.0178,
1349
+ "reward": 0.15625,
1350
+ "reward_mean": 0.15625,
1351
+ "reward_std": 0.3061639666557312,
1352
+ "rewards/accuracy_reward": 0.15625,
1353
+ "step": 96
1354
+ },
1355
+ {
1356
+ "advantages": 1.30385160446167e-08,
1357
+ "completion_length": 163.78125,
1358
+ "epoch": 0.08326180257510729,
1359
+ "grad_norm": 3.2692599296569824,
1360
+ "kl": 0.1796875,
1361
+ "learning_rate": 9.167381974248927e-07,
1362
+ "loss": 0.0179,
1363
+ "reward": 0.125,
1364
+ "reward_mean": 0.125,
1365
+ "reward_std": 0.2177756428718567,
1366
+ "rewards/accuracy_reward": 0.125,
1367
+ "step": 97
1368
+ },
1369
+ {
1370
+ "advantages": 1.30385160446167e-08,
1371
+ "completion_length": 158.0625,
1372
+ "epoch": 0.08412017167381974,
1373
+ "grad_norm": 3.954564094543457,
1374
+ "kl": 0.123046875,
1375
+ "learning_rate": 9.158798283261803e-07,
1376
+ "loss": 0.0123,
1377
+ "reward": 0.25,
1378
+ "reward_mean": 0.25,
1379
+ "reward_std": 0.3514062464237213,
1380
+ "rewards/accuracy_reward": 0.25,
1381
+ "step": 98
1382
+ },
1383
+ {
1384
+ "advantages": 0.0,
1385
+ "completion_length": 140.09375,
1386
+ "epoch": 0.08497854077253218,
1387
+ "grad_norm": 4.733702659606934,
1388
+ "kl": 0.166015625,
1389
+ "learning_rate": 9.150214592274678e-07,
1390
+ "loss": 0.0166,
1391
+ "reward": 0.25,
1392
+ "reward_mean": 0.25,
1393
+ "reward_std": 0.292504221200943,
1394
+ "rewards/accuracy_reward": 0.25,
1395
+ "step": 99
1396
+ },
1397
+ {
1398
+ "advantages": 1.6763806343078613e-08,
1399
+ "completion_length": 139.0625,
1400
+ "epoch": 0.08583690987124463,
1401
+ "grad_norm": 4.053472995758057,
1402
+ "kl": 0.15625,
1403
+ "learning_rate": 9.141630901287554e-07,
1404
+ "loss": 0.0157,
1405
+ "reward": 0.15625,
1406
+ "reward_mean": 0.15625,
1407
+ "reward_std": 0.3061639666557312,
1408
+ "rewards/accuracy_reward": 0.15625,
1409
+ "step": 100
1410
+ },
1411
+ {
1412
+ "advantages": 2.421438694000244e-08,
1413
+ "completion_length": 135.96875,
1414
+ "epoch": 0.08669527896995709,
1415
+ "grad_norm": 5.235788822174072,
1416
+ "kl": 0.18359375,
1417
+ "learning_rate": 9.133047210300429e-07,
1418
+ "loss": 0.0184,
1419
+ "reward": 0.34375,
1420
+ "reward_mean": 0.34375,
1421
+ "reward_std": 0.4944729208946228,
1422
+ "rewards/accuracy_reward": 0.34375,
1423
+ "step": 101
1424
+ },
1425
+ {
1426
+ "advantages": 1.862645149230957e-09,
1427
+ "completion_length": 164.1875,
1428
+ "epoch": 0.08755364806866953,
1429
+ "grad_norm": 4.011264801025391,
1430
+ "kl": 0.158203125,
1431
+ "learning_rate": 9.124463519313305e-07,
1432
+ "loss": 0.0158,
1433
+ "reward": 0.25,
1434
+ "reward_mean": 0.25,
1435
+ "reward_std": 0.3335031569004059,
1436
+ "rewards/accuracy_reward": 0.25,
1437
+ "step": 102
1438
+ },
1439
+ {
1440
+ "advantages": 1.30385160446167e-08,
1441
+ "completion_length": 141.59375,
1442
+ "epoch": 0.08841201716738198,
1443
+ "grad_norm": 4.756768226623535,
1444
+ "kl": 0.12109375,
1445
+ "learning_rate": 9.115879828326179e-07,
1446
+ "loss": 0.0121,
1447
+ "reward": 0.375,
1448
+ "reward_mean": 0.375,
1449
+ "reward_std": 0.4492306709289551,
1450
+ "rewards/accuracy_reward": 0.375,
1451
+ "step": 103
1452
+ },
1453
+ {
1454
+ "advantages": 2.9802322387695312e-08,
1455
+ "completion_length": 157.4375,
1456
+ "epoch": 0.08927038626609442,
1457
+ "grad_norm": 4.457541465759277,
1458
+ "kl": 0.1767578125,
1459
+ "learning_rate": 9.107296137339055e-07,
1460
+ "loss": 0.0177,
1461
+ "reward": 0.28125,
1462
+ "reward_mean": 0.28125,
1463
+ "reward_std": 0.4628904461860657,
1464
+ "rewards/accuracy_reward": 0.28125,
1465
+ "step": 104
1466
+ },
1467
+ {
1468
+ "advantages": 1.4901161193847656e-08,
1469
+ "completion_length": 174.65625,
1470
+ "epoch": 0.09012875536480687,
1471
+ "grad_norm": 3.6339664459228516,
1472
+ "kl": 0.1484375,
1473
+ "learning_rate": 9.09871244635193e-07,
1474
+ "loss": 0.0148,
1475
+ "reward": 0.125,
1476
+ "reward_mean": 0.125,
1477
+ "reward_std": 0.292504221200943,
1478
+ "rewards/accuracy_reward": 0.125,
1479
+ "step": 105
1480
+ },
1481
+ {
1482
+ "advantages": 2.0489096641540527e-08,
1483
+ "completion_length": 160.625,
1484
+ "epoch": 0.09098712446351931,
1485
+ "grad_norm": 5.5795159339904785,
1486
+ "kl": 0.1474609375,
1487
+ "learning_rate": 9.090128755364806e-07,
1488
+ "loss": 0.0147,
1489
+ "reward": 0.1875,
1490
+ "reward_mean": 0.1875,
1491
+ "reward_std": 0.3945523500442505,
1492
+ "rewards/accuracy_reward": 0.1875,
1493
+ "step": 106
1494
+ },
1495
+ {
1496
+ "advantages": -1.862645149230957e-09,
1497
+ "completion_length": 175.09375,
1498
+ "epoch": 0.09184549356223176,
1499
+ "grad_norm": 4.58608341217041,
1500
+ "kl": 0.20703125,
1501
+ "learning_rate": 9.081545064377682e-07,
1502
+ "loss": 0.0207,
1503
+ "reward": 0.21875,
1504
+ "reward_mean": 0.21875,
1505
+ "reward_std": 0.24511480331420898,
1506
+ "rewards/accuracy_reward": 0.21875,
1507
+ "step": 107
1508
+ },
1509
+ {
1510
+ "advantages": 1.4901161193847656e-08,
1511
+ "completion_length": 164.40625,
1512
+ "epoch": 0.0927038626609442,
1513
+ "grad_norm": 4.733726978302002,
1514
+ "kl": 0.13671875,
1515
+ "learning_rate": 9.072961373390558e-07,
1516
+ "loss": 0.0137,
1517
+ "reward": 0.25,
1518
+ "reward_mean": 0.25,
1519
+ "reward_std": 0.4261348247528076,
1520
+ "rewards/accuracy_reward": 0.25,
1521
+ "step": 108
1522
+ },
1523
+ {
1524
+ "advantages": 1.30385160446167e-08,
1525
+ "completion_length": 137.53125,
1526
+ "epoch": 0.09356223175965665,
1527
+ "grad_norm": 4.860609531402588,
1528
+ "kl": 0.1376953125,
1529
+ "learning_rate": 9.064377682403434e-07,
1530
+ "loss": 0.0138,
1531
+ "reward": 0.375,
1532
+ "reward_mean": 0.375,
1533
+ "reward_std": 0.4492306709289551,
1534
+ "rewards/accuracy_reward": 0.375,
1535
+ "step": 109
1536
+ },
1537
+ {
1538
+ "advantages": 2.60770320892334e-08,
1539
+ "completion_length": 143.1875,
1540
+ "epoch": 0.0944206008583691,
1541
+ "grad_norm": 5.030947685241699,
1542
+ "kl": 0.216796875,
1543
+ "learning_rate": 9.055793991416309e-07,
1544
+ "loss": 0.0217,
1545
+ "reward": 0.25,
1546
+ "reward_mean": 0.25,
1547
+ "reward_std": 0.4492306709289551,
1548
+ "rewards/accuracy_reward": 0.25,
1549
+ "step": 110
1550
+ },
1551
+ {
1552
+ "advantages": 2.0489096641540527e-08,
1553
+ "completion_length": 154.6875,
1554
+ "epoch": 0.09527896995708154,
1555
+ "grad_norm": 5.2177534103393555,
1556
+ "kl": 0.138671875,
1557
+ "learning_rate": 9.047210300429185e-07,
1558
+ "loss": 0.0139,
1559
+ "reward": 0.4375,
1560
+ "reward_mean": 0.4375,
1561
+ "reward_std": 0.3335031569004059,
1562
+ "rewards/accuracy_reward": 0.4375,
1563
+ "step": 111
1564
+ },
1565
+ {
1566
+ "advantages": 9.313225746154785e-09,
1567
+ "completion_length": 127.625,
1568
+ "epoch": 0.096137339055794,
1569
+ "grad_norm": 5.624181747436523,
1570
+ "kl": 0.1787109375,
1571
+ "learning_rate": 9.03862660944206e-07,
1572
+ "loss": 0.0179,
1573
+ "reward": 0.46875,
1574
+ "reward_mean": 0.46875,
1575
+ "reward_std": 0.5302791595458984,
1576
+ "rewards/accuracy_reward": 0.46875,
1577
+ "step": 112
1578
+ },
1579
+ {
1580
+ "advantages": 7.450580596923828e-09,
1581
+ "completion_length": 153.84375,
1582
+ "epoch": 0.09699570815450644,
1583
+ "grad_norm": 3.743622303009033,
1584
+ "kl": 0.1396484375,
1585
+ "learning_rate": 9.030042918454935e-07,
1586
+ "loss": 0.0139,
1587
+ "reward": 0.1875,
1588
+ "reward_mean": 0.1875,
1589
+ "reward_std": 0.3104073107242584,
1590
+ "rewards/accuracy_reward": 0.1875,
1591
+ "step": 113
1592
+ },
1593
+ {
1594
+ "advantages": -1.1175870895385742e-08,
1595
+ "completion_length": 162.5625,
1596
+ "epoch": 0.09785407725321889,
1597
+ "grad_norm": 4.363542556762695,
1598
+ "kl": 0.181640625,
1599
+ "learning_rate": 9.02145922746781e-07,
1600
+ "loss": 0.0182,
1601
+ "reward": 0.375,
1602
+ "reward_mean": 0.375,
1603
+ "reward_std": 0.3745020925998688,
1604
+ "rewards/accuracy_reward": 0.375,
1605
+ "step": 114
1606
+ },
1607
+ {
1608
+ "advantages": 7.450580596923828e-09,
1609
+ "completion_length": 154.3125,
1610
+ "epoch": 0.09871244635193133,
1611
+ "grad_norm": 5.912485599517822,
1612
+ "kl": 0.169921875,
1613
+ "learning_rate": 9.012875536480686e-07,
1614
+ "loss": 0.017,
1615
+ "reward": 0.34375,
1616
+ "reward_mean": 0.34375,
1617
+ "reward_std": 0.3608423173427582,
1618
+ "rewards/accuracy_reward": 0.34375,
1619
+ "step": 115
1620
+ },
1621
+ {
1622
+ "advantages": 1.4901161193847656e-08,
1623
+ "completion_length": 153.03125,
1624
+ "epoch": 0.09957081545064378,
1625
+ "grad_norm": 4.207987308502197,
1626
+ "kl": 0.11962890625,
1627
+ "learning_rate": 9.004291845493562e-07,
1628
+ "loss": 0.0119,
1629
+ "reward": 0.25,
1630
+ "reward_mean": 0.25,
1631
+ "reward_std": 0.4261348247528076,
1632
+ "rewards/accuracy_reward": 0.25,
1633
+ "step": 116
1634
+ },
1635
+ {
1636
+ "advantages": -5.587935447692871e-09,
1637
+ "completion_length": 149.09375,
1638
+ "epoch": 0.10042918454935622,
1639
+ "grad_norm": 4.171358108520508,
1640
+ "kl": 0.181640625,
1641
+ "learning_rate": 8.995708154506437e-07,
1642
+ "loss": 0.0181,
1643
+ "reward": 0.1875,
1644
+ "reward_mean": 0.1875,
1645
+ "reward_std": 0.2177756428718567,
1646
+ "rewards/accuracy_reward": 0.1875,
1647
+ "step": 117
1648
+ },
1649
+ {
1650
+ "advantages": 1.6763806343078613e-08,
1651
+ "completion_length": 135.25,
1652
+ "epoch": 0.10128755364806867,
1653
+ "grad_norm": 3.7221720218658447,
1654
+ "kl": 0.1357421875,
1655
+ "learning_rate": 8.987124463519313e-07,
1656
+ "loss": 0.0136,
1657
+ "reward": 0.15625,
1658
+ "reward_mean": 0.15625,
1659
+ "reward_std": 0.3061639964580536,
1660
+ "rewards/accuracy_reward": 0.15625,
1661
+ "step": 118
1662
+ },
1663
+ {
1664
+ "advantages": 1.4901161193847656e-08,
1665
+ "completion_length": 154.40625,
1666
+ "epoch": 0.10214592274678111,
1667
+ "grad_norm": 7.550022602081299,
1668
+ "kl": 0.318359375,
1669
+ "learning_rate": 8.978540772532188e-07,
1670
+ "loss": 0.0318,
1671
+ "reward": 0.25,
1672
+ "reward_mean": 0.25,
1673
+ "reward_std": 0.3650856614112854,
1674
+ "rewards/accuracy_reward": 0.25,
1675
+ "step": 119
1676
+ },
1677
+ {
1678
+ "advantages": 2.9802322387695312e-08,
1679
+ "completion_length": 139.15625,
1680
+ "epoch": 0.10300429184549356,
1681
+ "grad_norm": 5.675111293792725,
1682
+ "kl": 0.1552734375,
1683
+ "learning_rate": 8.969957081545064e-07,
1684
+ "loss": 0.0155,
1685
+ "reward": 0.28125,
1686
+ "reward_mean": 0.28125,
1687
+ "reward_std": 0.4628904461860657,
1688
+ "rewards/accuracy_reward": 0.28125,
1689
+ "step": 120
1690
+ },
1691
+ {
1692
+ "advantages": 1.1175870895385742e-08,
1693
+ "completion_length": 138.125,
1694
+ "epoch": 0.10386266094420601,
1695
+ "grad_norm": 4.683244228363037,
1696
+ "kl": 0.142578125,
1697
+ "learning_rate": 8.96137339055794e-07,
1698
+ "loss": 0.0142,
1699
+ "reward": 0.34375,
1700
+ "reward_mean": 0.34375,
1701
+ "reward_std": 0.4628904461860657,
1702
+ "rewards/accuracy_reward": 0.34375,
1703
+ "step": 121
1704
+ },
1705
+ {
1706
+ "advantages": -1.862645149230957e-09,
1707
+ "completion_length": 129.4375,
1708
+ "epoch": 0.10472103004291845,
1709
+ "grad_norm": 4.976833820343018,
1710
+ "kl": 0.1767578125,
1711
+ "learning_rate": 8.952789699570816e-07,
1712
+ "loss": 0.0177,
1713
+ "reward": 0.46875,
1714
+ "reward_mean": 0.46875,
1715
+ "reward_std": 0.5038893818855286,
1716
+ "rewards/accuracy_reward": 0.46875,
1717
+ "step": 122
1718
+ },
1719
+ {
1720
+ "advantages": 1.862645149230957e-09,
1721
+ "completion_length": 153.03125,
1722
+ "epoch": 0.1055793991416309,
1723
+ "grad_norm": 4.796186447143555,
1724
+ "kl": 0.1201171875,
1725
+ "learning_rate": 8.94420600858369e-07,
1726
+ "loss": 0.012,
1727
+ "reward": 0.375,
1728
+ "reward_mean": 0.375,
1729
+ "reward_std": 0.4671337604522705,
1730
+ "rewards/accuracy_reward": 0.375,
1731
+ "step": 123
1732
+ },
1733
+ {
1734
+ "advantages": -1.862645149230957e-09,
1735
+ "completion_length": 109.25,
1736
+ "epoch": 0.10643776824034334,
1737
+ "grad_norm": 4.939033031463623,
1738
+ "kl": 0.2236328125,
1739
+ "learning_rate": 8.935622317596566e-07,
1740
+ "loss": 0.0223,
1741
+ "reward": 0.46875,
1742
+ "reward_mean": 0.46875,
1743
+ "reward_std": 0.3061639964580536,
1744
+ "rewards/accuracy_reward": 0.46875,
1745
+ "step": 124
1746
+ },
1747
+ {
1748
+ "advantages": 1.30385160446167e-08,
1749
+ "completion_length": 131.90625,
1750
+ "epoch": 0.1072961373390558,
1751
+ "grad_norm": 6.3975114822387695,
1752
+ "kl": 0.1953125,
1753
+ "learning_rate": 8.927038626609442e-07,
1754
+ "loss": 0.0195,
1755
+ "reward": 0.375,
1756
+ "reward_mean": 0.375,
1757
+ "reward_std": 0.48503684997558594,
1758
+ "rewards/accuracy_reward": 0.375,
1759
+ "step": 125
1760
+ },
1761
+ {
1762
+ "advantages": 1.30385160446167e-08,
1763
+ "completion_length": 108.375,
1764
+ "epoch": 0.10815450643776824,
1765
+ "grad_norm": 5.976772308349609,
1766
+ "kl": 0.1650390625,
1767
+ "learning_rate": 8.918454935622317e-07,
1768
+ "loss": 0.0165,
1769
+ "reward": 0.375,
1770
+ "reward_mean": 0.375,
1771
+ "reward_std": 0.49022960662841797,
1772
+ "rewards/accuracy_reward": 0.375,
1773
+ "step": 126
1774
+ },
1775
+ {
1776
+ "advantages": 1.4901161193847656e-08,
1777
+ "completion_length": 129.25,
1778
+ "epoch": 0.10901287553648069,
1779
+ "grad_norm": 5.26469087600708,
1780
+ "kl": 0.14453125,
1781
+ "learning_rate": 8.909871244635193e-07,
1782
+ "loss": 0.0144,
1783
+ "reward": 0.375,
1784
+ "reward_mean": 0.375,
1785
+ "reward_std": 0.4629100561141968,
1786
+ "rewards/accuracy_reward": 0.375,
1787
+ "step": 127
1788
+ },
1789
+ {
1790
+ "advantages": -1.1175870895385742e-08,
1791
+ "completion_length": 128.3125,
1792
+ "epoch": 0.10987124463519313,
1793
+ "grad_norm": 5.042163848876953,
1794
+ "kl": 0.1328125,
1795
+ "learning_rate": 8.901287553648068e-07,
1796
+ "loss": 0.0133,
1797
+ "reward": 0.5,
1798
+ "reward_mean": 0.5,
1799
+ "reward_std": 0.5081326961517334,
1800
+ "rewards/accuracy_reward": 0.5,
1801
+ "step": 128
1802
+ },
1803
+ {
1804
+ "advantages": 1.862645149230957e-08,
1805
+ "completion_length": 150.875,
1806
+ "epoch": 0.11072961373390558,
1807
+ "grad_norm": 4.708669662475586,
1808
+ "kl": 0.12353515625,
1809
+ "learning_rate": 8.892703862660944e-07,
1810
+ "loss": 0.0124,
1811
+ "reward": 0.15625,
1812
+ "reward_mean": 0.15625,
1813
+ "reward_std": 0.3808925747871399,
1814
+ "rewards/accuracy_reward": 0.15625,
1815
+ "step": 129
1816
+ },
1817
+ {
1818
+ "advantages": 0.0,
1819
+ "completion_length": 120.40625,
1820
+ "epoch": 0.11158798283261803,
1821
+ "grad_norm": 5.916502952575684,
1822
+ "kl": 0.1708984375,
1823
+ "learning_rate": 8.884120171673819e-07,
1824
+ "loss": 0.0171,
1825
+ "reward": 0.34375,
1826
+ "reward_mean": 0.34375,
1827
+ "reward_std": 0.4397946000099182,
1828
+ "rewards/accuracy_reward": 0.34375,
1829
+ "step": 130
1830
+ },
1831
+ {
1832
+ "advantages": 1.4901161193847656e-08,
1833
+ "completion_length": 136.90625,
1834
+ "epoch": 0.11244635193133047,
1835
+ "grad_norm": 4.78549861907959,
1836
+ "kl": 0.1708984375,
1837
+ "learning_rate": 8.875536480686695e-07,
1838
+ "loss": 0.0171,
1839
+ "reward": 0.40625,
1840
+ "reward_mean": 0.40625,
1841
+ "reward_std": 0.5038893818855286,
1842
+ "rewards/accuracy_reward": 0.40625,
1843
+ "step": 131
1844
+ },
1845
+ {
1846
+ "advantages": -9.313225746154785e-09,
1847
+ "completion_length": 109.71875,
1848
+ "epoch": 0.11330472103004292,
1849
+ "grad_norm": 6.360599040985107,
1850
+ "kl": 0.25390625,
1851
+ "learning_rate": 8.86695278969957e-07,
1852
+ "loss": 0.0254,
1853
+ "reward": 0.40625,
1854
+ "reward_mean": 0.40625,
1855
+ "reward_std": 0.3608423173427582,
1856
+ "rewards/accuracy_reward": 0.40625,
1857
+ "step": 132
1858
+ },
1859
+ {
1860
+ "advantages": 1.4901161193847656e-08,
1861
+ "completion_length": 135.375,
1862
+ "epoch": 0.11416309012875536,
1863
+ "grad_norm": 4.24266242980957,
1864
+ "kl": 0.1650390625,
1865
+ "learning_rate": 8.858369098712447e-07,
1866
+ "loss": 0.0165,
1867
+ "reward": 0.28125,
1868
+ "reward_mean": 0.28125,
1869
+ "reward_std": 0.378745436668396,
1870
+ "rewards/accuracy_reward": 0.28125,
1871
+ "step": 133
1872
+ },
1873
+ {
1874
+ "advantages": 0.0,
1875
+ "completion_length": 97.59375,
1876
+ "epoch": 0.11502145922746781,
1877
+ "grad_norm": 6.252864360809326,
1878
+ "kl": 0.2177734375,
1879
+ "learning_rate": 8.849785407725322e-07,
1880
+ "loss": 0.0217,
1881
+ "reward": 0.5,
1882
+ "reward_mean": 0.5,
1883
+ "reward_std": 0.4082317352294922,
1884
+ "rewards/accuracy_reward": 0.5,
1885
+ "step": 134
1886
+ },
1887
+ {
1888
+ "advantages": 2.0489096641540527e-08,
1889
+ "completion_length": 118.8125,
1890
+ "epoch": 0.11587982832618025,
1891
+ "grad_norm": 5.049542427062988,
1892
+ "kl": 0.2060546875,
1893
+ "learning_rate": 8.841201716738197e-07,
1894
+ "loss": 0.0206,
1895
+ "reward": 0.1875,
1896
+ "reward_mean": 0.1875,
1897
+ "reward_std": 0.3335031569004059,
1898
+ "rewards/accuracy_reward": 0.1875,
1899
+ "step": 135
1900
+ },
1901
+ {
1902
+ "advantages": -3.725290298461914e-09,
1903
+ "completion_length": 120.5625,
1904
+ "epoch": 0.1167381974248927,
1905
+ "grad_norm": 5.062263011932373,
1906
+ "kl": 0.189453125,
1907
+ "learning_rate": 8.832618025751073e-07,
1908
+ "loss": 0.0189,
1909
+ "reward": 0.59375,
1910
+ "reward_mean": 0.59375,
1911
+ "reward_std": 0.4807935357093811,
1912
+ "rewards/accuracy_reward": 0.59375,
1913
+ "step": 136
1914
+ },
1915
+ {
1916
+ "advantages": 2.2351741790771484e-08,
1917
+ "completion_length": 122.96875,
1918
+ "epoch": 0.11759656652360514,
1919
+ "grad_norm": 6.447961330413818,
1920
+ "kl": 0.19921875,
1921
+ "learning_rate": 8.824034334763948e-07,
1922
+ "loss": 0.0199,
1923
+ "reward": 0.34375,
1924
+ "reward_mean": 0.34375,
1925
+ "reward_std": 0.4944729208946228,
1926
+ "rewards/accuracy_reward": 0.34375,
1927
+ "step": 137
1928
+ },
1929
+ {
1930
+ "advantages": 1.862645149230957e-08,
1931
+ "completion_length": 125.3125,
1932
+ "epoch": 0.1184549356223176,
1933
+ "grad_norm": 6.920899868011475,
1934
+ "kl": 0.208984375,
1935
+ "learning_rate": 8.815450643776824e-07,
1936
+ "loss": 0.0209,
1937
+ "reward": 0.28125,
1938
+ "reward_mean": 0.28125,
1939
+ "reward_std": 0.4534739851951599,
1940
+ "rewards/accuracy_reward": 0.28125,
1941
+ "step": 138
1942
+ },
1943
+ {
1944
+ "advantages": -3.725290298461914e-09,
1945
+ "completion_length": 128.4375,
1946
+ "epoch": 0.11931330472103004,
1947
+ "grad_norm": 4.800882339477539,
1948
+ "kl": 0.173828125,
1949
+ "learning_rate": 8.806866952789699e-07,
1950
+ "loss": 0.0173,
1951
+ "reward": 0.5,
1952
+ "reward_mean": 0.5,
1953
+ "reward_std": 0.4492306709289551,
1954
+ "rewards/accuracy_reward": 0.5,
1955
+ "step": 139
1956
+ },
1957
+ {
1958
+ "advantages": 1.862645149230957e-08,
1959
+ "completion_length": 108.1875,
1960
+ "epoch": 0.12017167381974249,
1961
+ "grad_norm": 22.795358657836914,
1962
+ "kl": 0.419921875,
1963
+ "learning_rate": 8.798283261802575e-07,
1964
+ "loss": 0.042,
1965
+ "reward": 0.15625,
1966
+ "reward_mean": 0.15625,
1967
+ "reward_std": 0.3808925747871399,
1968
+ "rewards/accuracy_reward": 0.15625,
1969
+ "step": 140
1970
+ },
1971
+ {
1972
+ "advantages": 1.1175870895385742e-08,
1973
+ "completion_length": 141.84375,
1974
+ "epoch": 0.12103004291845494,
1975
+ "grad_norm": 6.3895745277404785,
1976
+ "kl": 0.1962890625,
1977
+ "learning_rate": 8.78969957081545e-07,
1978
+ "loss": 0.0196,
1979
+ "reward": 0.375,
1980
+ "reward_mean": 0.375,
1981
+ "reward_std": 0.47655022144317627,
1982
+ "rewards/accuracy_reward": 0.375,
1983
+ "step": 141
1984
+ },
1985
+ {
1986
+ "advantages": 7.450580596923828e-09,
1987
+ "completion_length": 115.3125,
1988
+ "epoch": 0.12188841201716738,
1989
+ "grad_norm": 4.0062103271484375,
1990
+ "kl": 0.1669921875,
1991
+ "learning_rate": 8.781115879828326e-07,
1992
+ "loss": 0.0167,
1993
+ "reward": 0.1875,
1994
+ "reward_mean": 0.1875,
1995
+ "reward_std": 0.249358132481575,
1996
+ "rewards/accuracy_reward": 0.1875,
1997
+ "step": 142
1998
+ },
1999
+ {
2000
+ "advantages": -3.725290298461914e-09,
2001
+ "completion_length": 131.84375,
2002
+ "epoch": 0.12274678111587983,
2003
+ "grad_norm": 6.299867630004883,
2004
+ "kl": 0.2451171875,
2005
+ "learning_rate": 8.772532188841201e-07,
2006
+ "loss": 0.0246,
2007
+ "reward": 0.625,
2008
+ "reward_mean": 0.625,
2009
+ "reward_std": 0.4671337604522705,
2010
+ "rewards/accuracy_reward": 0.625,
2011
+ "step": 143
2012
+ },
2013
+ {
2014
+ "advantages": -1.30385160446167e-08,
2015
+ "completion_length": 134.3125,
2016
+ "epoch": 0.12360515021459227,
2017
+ "grad_norm": 5.634101390838623,
2018
+ "kl": 0.18359375,
2019
+ "learning_rate": 8.763948497854076e-07,
2020
+ "loss": 0.0184,
2021
+ "reward": 0.625,
2022
+ "reward_mean": 0.625,
2023
+ "reward_std": 0.4850368797779083,
2024
+ "rewards/accuracy_reward": 0.625,
2025
+ "step": 144
2026
+ },
2027
+ {
2028
+ "advantages": -2.0489096641540527e-08,
2029
+ "completion_length": 124.90625,
2030
+ "epoch": 0.12446351931330472,
2031
+ "grad_norm": 5.229036331176758,
2032
+ "kl": 0.1435546875,
2033
+ "learning_rate": 8.755364806866952e-07,
2034
+ "loss": 0.0143,
2035
+ "reward": 0.53125,
2036
+ "reward_mean": 0.53125,
2037
+ "reward_std": 0.4628904461860657,
2038
+ "rewards/accuracy_reward": 0.53125,
2039
+ "step": 145
2040
+ },
2041
+ {
2042
+ "advantages": 7.450580596923828e-09,
2043
+ "completion_length": 121.59375,
2044
+ "epoch": 0.12532188841201716,
2045
+ "grad_norm": 4.288768768310547,
2046
+ "kl": 0.1875,
2047
+ "learning_rate": 8.746781115879828e-07,
2048
+ "loss": 0.0188,
2049
+ "reward": 0.3125,
2050
+ "reward_mean": 0.3125,
2051
+ "reward_std": 0.3745020925998688,
2052
+ "rewards/accuracy_reward": 0.3125,
2053
+ "step": 146
2054
+ },
2055
+ {
2056
+ "advantages": 2.60770320892334e-08,
2057
+ "completion_length": 145.53125,
2058
+ "epoch": 0.12618025751072962,
2059
+ "grad_norm": 4.884040355682373,
2060
+ "kl": 0.189453125,
2061
+ "learning_rate": 8.738197424892704e-07,
2062
+ "loss": 0.0189,
2063
+ "reward": 0.375,
2064
+ "reward_mean": 0.375,
2065
+ "reward_std": 0.5081326961517334,
2066
+ "rewards/accuracy_reward": 0.375,
2067
+ "step": 147
2068
+ },
2069
+ {
2070
+ "advantages": 2.60770320892334e-08,
2071
+ "completion_length": 129.34375,
2072
+ "epoch": 0.12703862660944207,
2073
+ "grad_norm": 5.560000419616699,
2074
+ "kl": 0.1904296875,
2075
+ "learning_rate": 8.729613733905579e-07,
2076
+ "loss": 0.019,
2077
+ "reward": 0.375,
2078
+ "reward_mean": 0.375,
2079
+ "reward_std": 0.5081326961517334,
2080
+ "rewards/accuracy_reward": 0.375,
2081
+ "step": 148
2082
+ },
2083
+ {
2084
+ "advantages": 9.313225746154785e-09,
2085
+ "completion_length": 125.46875,
2086
+ "epoch": 0.1278969957081545,
2087
+ "grad_norm": 5.247032642364502,
2088
+ "kl": 0.14453125,
2089
+ "learning_rate": 8.721030042918455e-07,
2090
+ "loss": 0.0145,
2091
+ "reward": 0.46875,
2092
+ "reward_mean": 0.46875,
2093
+ "reward_std": 0.5302791595458984,
2094
+ "rewards/accuracy_reward": 0.46875,
2095
+ "step": 149
2096
+ },
2097
+ {
2098
+ "advantages": 1.1175870895385742e-08,
2099
+ "completion_length": 123.5625,
2100
+ "epoch": 0.12875536480686695,
2101
+ "grad_norm": 6.392980098724365,
2102
+ "kl": 0.193359375,
2103
+ "learning_rate": 8.71244635193133e-07,
2104
+ "loss": 0.0193,
2105
+ "reward": 0.5,
2106
+ "reward_mean": 0.5,
2107
+ "reward_std": 0.5081326961517334,
2108
+ "rewards/accuracy_reward": 0.5,
2109
+ "step": 150
2110
+ },
2111
+ {
2112
+ "advantages": -1.4901161193847656e-08,
2113
+ "completion_length": 125.84375,
2114
+ "epoch": 0.1296137339055794,
2115
+ "grad_norm": 5.506472587585449,
2116
+ "kl": 0.2099609375,
2117
+ "learning_rate": 8.703862660944206e-07,
2118
+ "loss": 0.021,
2119
+ "reward": 0.5625,
2120
+ "reward_mean": 0.5625,
2121
+ "reward_std": 0.5260357856750488,
2122
+ "rewards/accuracy_reward": 0.5625,
2123
+ "step": 151
2124
+ },
2125
+ {
2126
+ "advantages": 5.587935447692871e-09,
2127
+ "completion_length": 111.53125,
2128
+ "epoch": 0.13047210300429185,
2129
+ "grad_norm": 8.247237205505371,
2130
+ "kl": 0.2578125,
2131
+ "learning_rate": 8.695278969957082e-07,
2132
+ "loss": 0.0258,
2133
+ "reward": 0.40625,
2134
+ "reward_mean": 0.40625,
2135
+ "reward_std": 0.4944729208946228,
2136
+ "rewards/accuracy_reward": 0.40625,
2137
+ "step": 152
2138
+ },
2139
+ {
2140
+ "advantages": -1.862645149230957e-08,
2141
+ "completion_length": 135.6875,
2142
+ "epoch": 0.1313304721030043,
2143
+ "grad_norm": 5.90345573425293,
2144
+ "kl": 0.197265625,
2145
+ "learning_rate": 8.686695278969956e-07,
2146
+ "loss": 0.0197,
2147
+ "reward": 0.5625,
2148
+ "reward_mean": 0.5625,
2149
+ "reward_std": 0.49022960662841797,
2150
+ "rewards/accuracy_reward": 0.5625,
2151
+ "step": 153
2152
+ },
2153
+ {
2154
+ "advantages": 1.4901161193847656e-08,
2155
+ "completion_length": 134.53125,
2156
+ "epoch": 0.13218884120171673,
2157
+ "grad_norm": 5.609891891479492,
2158
+ "kl": 0.171875,
2159
+ "learning_rate": 8.678111587982832e-07,
2160
+ "loss": 0.0172,
2161
+ "reward": 0.40625,
2162
+ "reward_mean": 0.40625,
2163
+ "reward_std": 0.5123760104179382,
2164
+ "rewards/accuracy_reward": 0.40625,
2165
+ "step": 154
2166
+ },
2167
+ {
2168
+ "advantages": -1.1175870895385742e-08,
2169
+ "completion_length": 122.59375,
2170
+ "epoch": 0.13304721030042918,
2171
+ "grad_norm": 4.156961917877197,
2172
+ "kl": 0.1435546875,
2173
+ "learning_rate": 8.669527896995707e-07,
2174
+ "loss": 0.0143,
2175
+ "reward": 0.53125,
2176
+ "reward_mean": 0.53125,
2177
+ "reward_std": 0.3377464711666107,
2178
+ "rewards/accuracy_reward": 0.53125,
2179
+ "step": 155
2180
+ },
2181
+ {
2182
+ "advantages": -1.862645149230957e-09,
2183
+ "completion_length": 104.71875,
2184
+ "epoch": 0.13390557939914163,
2185
+ "grad_norm": 7.677206993103027,
2186
+ "kl": 0.291015625,
2187
+ "learning_rate": 8.660944206008583e-07,
2188
+ "loss": 0.0291,
2189
+ "reward": 0.21875,
2190
+ "reward_mean": 0.21875,
2191
+ "reward_std": 0.24511480331420898,
2192
+ "rewards/accuracy_reward": 0.21875,
2193
+ "step": 156
2194
+ },
2195
+ {
2196
+ "advantages": -1.30385160446167e-08,
2197
+ "completion_length": 130.375,
2198
+ "epoch": 0.13476394849785409,
2199
+ "grad_norm": 4.416824817657471,
2200
+ "kl": 0.166015625,
2201
+ "learning_rate": 8.652360515021458e-07,
2202
+ "loss": 0.0166,
2203
+ "reward": 0.625,
2204
+ "reward_mean": 0.625,
2205
+ "reward_std": 0.4492306709289551,
2206
+ "rewards/accuracy_reward": 0.625,
2207
+ "step": 157
2208
+ },
2209
+ {
2210
+ "advantages": 1.6763806343078613e-08,
2211
+ "completion_length": 119.46875,
2212
+ "epoch": 0.1356223175965665,
2213
+ "grad_norm": 3.8171494007110596,
2214
+ "kl": 0.1728515625,
2215
+ "learning_rate": 8.643776824034334e-07,
2216
+ "loss": 0.0173,
2217
+ "reward": 0.15625,
2218
+ "reward_mean": 0.15625,
2219
+ "reward_std": 0.24511480331420898,
2220
+ "rewards/accuracy_reward": 0.15625,
2221
+ "step": 158
2222
+ },
2223
+ {
2224
+ "advantages": 9.313225746154785e-09,
2225
+ "completion_length": 107.59375,
2226
+ "epoch": 0.13648068669527896,
2227
+ "grad_norm": 5.097965717315674,
2228
+ "kl": 0.1787109375,
2229
+ "learning_rate": 8.63519313304721e-07,
2230
+ "loss": 0.0179,
2231
+ "reward": 0.59375,
2232
+ "reward_mean": 0.59375,
2233
+ "reward_std": 0.38816186785697937,
2234
+ "rewards/accuracy_reward": 0.59375,
2235
+ "step": 159
2236
+ },
2237
+ {
2238
+ "advantages": 1.30385160446167e-08,
2239
+ "completion_length": 110.875,
2240
+ "epoch": 0.13733905579399142,
2241
+ "grad_norm": 5.293290138244629,
2242
+ "kl": 0.169921875,
2243
+ "learning_rate": 8.626609442060086e-07,
2244
+ "loss": 0.017,
2245
+ "reward": 0.375,
2246
+ "reward_mean": 0.375,
2247
+ "reward_std": 0.4492306709289551,
2248
+ "rewards/accuracy_reward": 0.375,
2249
+ "step": 160
2250
+ }
2251
+ ],
2252
+ "logging_steps": 1.0,
2253
+ "max_steps": 1165,
2254
+ "num_input_tokens_seen": 0,
2255
+ "num_train_epochs": 1,
2256
+ "save_steps": 10,
2257
+ "stateful_callbacks": {
2258
+ "TrainerControl": {
2259
+ "args": {
2260
+ "should_epoch_stop": false,
2261
+ "should_evaluate": false,
2262
+ "should_log": false,
2263
+ "should_save": true,
2264
+ "should_training_stop": false
2265
+ },
2266
+ "attributes": {}
2267
+ }
2268
+ },
2269
+ "total_flos": 0.0,
2270
+ "train_batch_size": 1,
2271
+ "trial_name": null,
2272
+ "trial_params": null
2273
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8738459828a454257f90ce379157027577338807999ffff54bb828d59425343
3
+ size 8312
vocab.json ADDED
The diff for this file is too large to render. See raw diff