File size: 1,911 Bytes
4fa5903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: hfl/chinese-xlnet-mid
tags:
- generated_from_trainer
model-index:
- name: xlnet-mid
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlnet-mid

This model is a fine-tuned version of [hfl/chinese-xlnet-mid](https://huggingface.co/hfl/chinese-xlnet-mid) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7725

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.623         | 0.08  | 500  | 5.6406          |
| 5.456         | 0.16  | 1000 | 5.5080          |
| 5.2287        | 0.23  | 1500 | 5.3861          |
| 4.9929        | 0.31  | 2000 | 5.3493          |
| 5.3415        | 0.39  | 2500 | 5.1613          |
| 5.2163        | 0.47  | 3000 | 5.0551          |
| 5.1069        | 0.55  | 3500 | 4.9676          |
| 5.0365        | 0.62  | 4000 | 4.9118          |
| 4.9674        | 0.7   | 4500 | 4.8411          |
| 4.9259        | 0.78  | 5000 | 4.7963          |
| 4.8875        | 0.86  | 5500 | 4.7777          |
| 4.9003        | 0.94  | 6000 | 4.7725          |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0