--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-cv-11-ug-test_01 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ug split: test args: ug metrics: - name: Wer type: wer value: 1.0 --- # wav2vec2-large-xls-r-300m-cv-11-ug-test_01 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 3.0973 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.9981 | 8.0 | 500 | 3.0973 | 1.0 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.14.6 - Tokenizers 0.14.1