File size: 3,142 Bytes
8ec0291
f7d0a1d
65f6bd8
f7d0a1d
 
e9d1818
 
 
23a1e74
f7d0a1d
 
 
e59e26c
f7d0a1d
 
 
783db85
e46b579
 
f7d0a1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ec0291
 
0144301
8ec0291
096e78f
8ec0291
 
 
 
 
 
 
 
 
 
bdeb8c9
 
8ec0291
096e78f
8ec0291
 
 
c517963
de9d091
8ec0291
 
 
 
2f5b029
8ec0291
 
 
2f5b029
8ec0291
 
 
 
0144301
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
base_model: PekingU/rtdetr_r101vd_coco_o365
datasets: keremberke/satellite-building-segmentation
library_name: transformers
license: mit
metrics:
- Average Precision (AP)
- Average Recall (AR)
pipeline_tag: object-detection
tags:
- remote sensing
- object detection
widget:
- src: img.png
  output:
    url: img.png
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
  results:
  - task:
      type: object-detection
    dataset:
      name: keremberke/satellite-building-segmentation
      type: image-segmentation
    metrics:
    - type: AP (IoU=0.50:0.95)
      value: 0.43
      name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
    - type: AP (IoU=0.50)
      value: 0.636
      name: AP @ IoU=0.50 | area=all | maxDets=100
    - type: AP (IoU=0.75)
      value: 0.462
      name: AP @ IoU=0.75 | area=all | maxDets=100
    - type: AP (IoU=0.50:0.95) small objects
      value: 0.241
      name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
    - type: AP (IoU=0.50:0.95) medium objects
      value: 0.513
      name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
    - type: AP (IoU=0.50:0.95) large objects
      value: 0.624
      name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
    - type: AR (IoU=0.50:0.95) maxDets=1
      value: 0.055
      name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
    - type: AR (IoU=0.50:0.95) maxDets=10
      value: 0.327
      name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
    - type: AR (IoU=0.50:0.95) maxDets=100
      value: 0.507
      name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
    - type: AR (IoU=0.50:0.95) small objects
      value: 0.312
      name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
    - type: AR (IoU=0.50:0.95) medium objects
      value: 0.595
      name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
    - type: AR (IoU=0.50:0.95) large objects
      value: 0.712
      name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
---

# Model Card

Roof Detection for Remote Sensing task.
<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Model type:** Object Detection for Remote Sensing task.
- **License:** MIT

### Model Sources 

<!-- Provide the basic links for the model. -->

- **GitHub:** [Jupyter Notebook](https://github.com/ownEyes/satellite-image-roofs-auto-annotation-sourcecode/blob/dev/notebooks/finetune_rtdetr.ipynb)
- **Demo:** [Pending]




## Limitations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

## How to Get Started with the Model

Use the code below to get started with the model.
```python
from transformers import AutoModelForObjectDetection, AutoImageProcessor

model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
```