File size: 2,279 Bytes
53274e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: clinc_oos
      type: clinc_oos
      config: plus
      split: validation
      args: plus
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9496774193548387
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-distilled-clinc

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2461
- Accuracy: 0.9497

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.2483        | 1.0   | 318  | 3.1615          | 0.7358   |
| 2.3996        | 2.0   | 636  | 1.5548          | 0.8626   |
| 1.1607        | 3.0   | 954  | 0.7750          | 0.9142   |
| 0.5651        | 4.0   | 1272 | 0.4625          | 0.9358   |
| 0.3003        | 5.0   | 1590 | 0.3357          | 0.9410   |
| 0.1754        | 6.0   | 1908 | 0.2854          | 0.9452   |
| 0.1134        | 7.0   | 2226 | 0.2637          | 0.9474   |
| 0.0817        | 8.0   | 2544 | 0.2490          | 0.9487   |
| 0.0665        | 9.0   | 2862 | 0.2486          | 0.9490   |
| 0.0577        | 10.0  | 3180 | 0.2461          | 0.9497   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3