--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer base_model: openai/whisper-base model-index: - name: whisper-base-ar-quran results: [] --- # whisper-base-ar-quran This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0839 - Wer: 5.7544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1092 | 0.05 | 250 | 0.1969 | 13.3890 | | 0.0361 | 0.1 | 500 | 0.1583 | 10.6375 | | 0.0192 | 0.15 | 750 | 0.1109 | 8.8468 | | 0.0144 | 0.2 | 1000 | 0.1157 | 7.9754 | | 0.008 | 0.25 | 1250 | 0.1000 | 7.5360 | | 0.0048 | 1.03 | 1500 | 0.0933 | 6.8227 | | 0.0113 | 1.08 | 1750 | 0.0955 | 6.9638 | | 0.0209 | 1.13 | 2000 | 0.0824 | 6.3586 | | 0.0043 | 1.18 | 2250 | 0.0830 | 6.3444 | | 0.002 | 1.23 | 2500 | 0.1015 | 6.3025 | | 0.0013 | 2.01 | 2750 | 0.0863 | 6.0639 | | 0.0014 | 2.06 | 3000 | 0.0905 | 6.0213 | | 0.0018 | 2.11 | 3250 | 0.0864 | 6.0293 | | 0.0008 | 2.16 | 3500 | 0.0887 | 5.9308 | | 0.0029 | 2.21 | 3750 | 0.0777 | 5.9159 | | 0.0022 | 2.26 | 4000 | 0.0847 | 5.8749 | | 0.0005 | 3.05 | 4250 | 0.0827 | 5.8352 | | 0.0003 | 3.1 | 4500 | 0.0826 | 5.7800 | | 0.0006 | 3.15 | 4750 | 0.0833 | 5.7625 | | 0.0003 | 3.2 | 5000 | 0.0839 | 5.7544 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2