Zeroxdesignart
commited on
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
from music21 import converter, instrument, note, chord, stream
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load Models
|
7 |
+
melody_model = AutoModelForCausalLM.from_pretrained("your_melody_model") # Replace with actual model name
|
8 |
+
harmony_model = AutoModelForCausalLM.from_pretrained("your_harmony_model") # Replace with actual model name
|
9 |
+
rhythm_model = AutoModelForCausalLM.from_pretrained("your_rhythm_model") # Replace with actual model name
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
11 |
+
|
12 |
+
# Define functions for each step
|
13 |
+
|
14 |
+
def generate_melody(prompt, length=50):
|
15 |
+
"""Generates a melody sequence based on the given prompt."""
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
17 |
+
melody_output = melody_model.generate(inputs['input_ids'], max_length=length)
|
18 |
+
melody_notes = tokenizer.decode(melody_output[0], skip_special_tokens=True)
|
19 |
+
return melody_notes
|
20 |
+
|
21 |
+
def generate_harmony(melody_sequence, length=100):
|
22 |
+
"""Generates harmonic support based on the melody."""
|
23 |
+
harmony_input = torch.cat([tokenizer.encode(melody_sequence, return_tensors="pt"), tokenizer("add harmony", return_tensors="pt")['input_ids']], dim=1)
|
24 |
+
harmony_output = harmony_model.generate(harmony_input, max_length=length)
|
25 |
+
harmony_notes = tokenizer.decode(harmony_output[0], skip_special_tokens=True)
|
26 |
+
return harmony_notes
|
27 |
+
|
28 |
+
def generate_rhythm(harmony_sequence, length=50):
|
29 |
+
"""Adds rhythm to the harmony for structure."""
|
30 |
+
rhythm_input = torch.cat([tokenizer.encode(harmony_sequence, return_tensors="pt"), tokenizer("add rhythm", return_tensors="pt")['input_ids']], dim=1)
|
31 |
+
rhythm_output = rhythm_model.generate(rhythm_input, max_length=length)
|
32 |
+
rhythm_sequence = tokenizer.decode(rhythm_output[0], skip_special_tokens=True)
|
33 |
+
return rhythm_sequence
|
34 |
+
|
35 |
+
def create_midi(melody, harmony, rhythm):
|
36 |
+
"""Converts melody, harmony, and rhythm sequences to MIDI format."""
|
37 |
+
composition = stream.Stream()
|
38 |
+
|
39 |
+
for part in [melody, harmony, rhythm]:
|
40 |
+
for token in part.split():
|
41 |
+
if token.isdigit():
|
42 |
+
midi_note = note.Note(int(token))
|
43 |
+
midi_note.quarterLength = 0.5
|
44 |
+
composition.append(midi_note)
|
45 |
+
elif token == "rest":
|
46 |
+
rest_note = note.Rest()
|
47 |
+
rest_note.quarterLength = 0.5
|
48 |
+
composition.append(rest_note)
|
49 |
+
|
50 |
+
midi_fp = "generated_music.mid"
|
51 |
+
composition.write('midi', fp=midi_fp)
|
52 |
+
return midi_fp
|
53 |
+
|
54 |
+
# Full generation function
|
55 |
+
def generate_music(prompt, length=50):
|
56 |
+
melody = generate_melody(prompt, length)
|
57 |
+
harmony = generate_harmony(melody, length)
|
58 |
+
rhythm = generate_rhythm(harmony, length)
|
59 |
+
midi_file = create_midi(melody, harmony, rhythm)
|
60 |
+
return midi_file
|
61 |
+
|
62 |
+
# Set up Gradio interface
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=generate_music,
|
65 |
+
inputs=["text", "slider"],
|
66 |
+
outputs="file",
|
67 |
+
title="Multi-Model AI Music Generator",
|
68 |
+
description="Generate music using a multi-model AI system that combines melody, harmony, and rhythm layers.",
|
69 |
+
)
|
70 |
+
|
71 |
+
iface.launch()
|