File size: 12,302 Bytes
02680d2 617e50f a32d99e 617e50f 02680d2 c5e2612 02680d2 61cdb10 9460396 9f1d774 8d61eda 0bbb5b9 8d61eda f435768 9460396 02680d2 617e50f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
---
language:
- en
license: cc-by-sa-4.0
library_name: transformers
base_model:
- elinas/Llama-3-15B-Instruct-zeroed
datasets:
- TheSkullery/Aether-Lite-v1.8.1
model-index:
- name: L3-Aethora-15B-V2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 72.08
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeusLabs/L3-Aethora-15B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 28.97
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeusLabs/L3-Aethora-15B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 7.33
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeusLabs/L3-Aethora-15B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.03
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeusLabs/L3-Aethora-15B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.25
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeusLabs/L3-Aethora-15B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.78
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeusLabs/L3-Aethora-15B-V2
name: Open LLM Leaderboard
---
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>L3-Aethora-15B v2 Data Card</title>
<link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet">
<style>
body, html {
height: 100%;
margin: 0;
padding: 0;
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1128 0%, #1c2541 100%);
color: #e0e1dd;
font-size: 16px;
}
.container {
width: 100%;
height: 100%;
padding: 20px;
margin: 0;
background-color: rgba(255, 255, 255, 0.05);
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.1);
}
.header h1 {
font-size: 28px;
color: #4cc9f0;
margin: 0 0 20px 0;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.update-section h2 {
font-size: 24px;
color: #7209b7;
}
.update-section p {
font-size: 16px;
line-height: 1.6;
color: #e0e1dd;
}
.info img {
width: 100%;
border-radius: 10px;
margin-bottom: 15px;
}
a {
color: #4cc9f0;
text-decoration: none;
}
a:hover {
color: #f72585;
}
.button {
display: inline-block;
background-color: #3a0ca3;
color: #e0e1dd;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
text-decoration: none;
}
.button:hover {
background-color: #7209b7;
}
pre {
background-color: #1c2541;
padding: 10px;
border-radius: 5px;
overflow-x: auto;
}
code {
font-family: 'Courier New', monospace;
color: #e0e1dd;
}
</style>
</head>
<body>
<div class="container">
<div class="header">
<h1>L3-Aethora-15B v2</h1>
</div>
<div class="info">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/yJpwVd5UTnAVDoEPVVCS1.png">
<h2>Presented by:</h2>
<p><strong>Creators: <a href="https://huggingface.co/ZeusLabs" target="_blank"> ZeusLabs</a> </p></strong>
<ul>
<li><a href="https://huggingface.co/steelskull" target="_blank">Steelskull</a></p></li>
<li><a href="https://huggingface.co/elinas" target="_blank">Elinas</a></p></li>
</ul>
<p><strong>Dataset:</strong> <a href="https://huggingface.co/datasets/TheSkullery/Aether-Lite-V1.8.1" target="_blank">Theskullery/Aether-Lite-V1.8.1</a></p>
<p><strong>Trained:</strong> 4 x A100 for 17.5 hours on 125k samples</p>
<p><strong>Sponsored by:</strong> Garg (@g4rg)</p>
<h2>About L3-Aethora-15B v2:</h2>
<pre><code> L3 = Llama3 </code></pre>
<p>L3-Aethora-15B v2 is an advanced language model built upon the Llama 3 architecture. It employs state-of-the-art training techniques and a curated dataset to deliver enhanced performance across a wide range of tasks.</p>
<p>(Thank you all for the interest! the model has <strong>surpassed 260k downloads</strong> on all formats!)</p>
<h4>Quants:</h4>
<ul>
<p>GGUF-Mix:</p>
<li>@Mradermacher: <a href="https://huggingface.co/mradermacher/L3-Aethora-15B-V2-GGUF" target="_blank">L3-Aethora-15B-V2-GGUF</a> && <a href="https://huggingface.co/mradermacher/L3-Aethora-15B-V2-i1-GGUF" target="_blank">L3-Aethora-15B-V2-Imatrix-GGUF</a></li>
<li>@Bullerwins: <a href="https://huggingface.co/bullerwins/L3-Aethora-15B-V2-GGUF" target="_blank">L3-Aethora-15B-V2-GGUF-Only</a></li>
<li>@Bartowski: <a href="https://huggingface.co/bartowski/L3-Aethora-15B-V2-GGUF" target="_blank">L3-Aethora-15B-V2-GGUF-&-Imatrix-&-F16</a></li>
<li>@Duyntnet: <a href="https://huggingface.co/duyntnet/L3-Aethora-15B-V2-imatrix-GGUF" target="_blank">L3-Aethora-15B-V2-GGUF-&-Imatrix</a></li>
<p>GGUF-F16: (both f16.q6 and f16.q5 are smaller than q8 and perform as well as the pure f16)</p>
<li>@MZeroWw: <a href="https://huggingface.co/ZeroWw/L3-Aethora-15B-V2-GGUF" target="_blank">L3-Aethora-15B-V2-GGUF-f16</a></li>
<p>EXL2:</p>
<li>@Bullerwins: <a href="https://huggingface.co/collections/bullerwins/l3-aethora-15b-v2-exl2-667d1f4c0204c59594ca79ae" target="_blank">L3-Aethora-15B-V2-EXL2</a></li>
</ul>
<h2>Training Process:</h2>
<ul>
<li>Base Model: elinas/Llama-3-15B-Instruct-zeroed</li>
<li>Training Duration: 17.5 hours on 4 x A100 GPUs</li>
<li>Training Method: LoRA (Low-Rank Adaptation)</li>
<li>Epochs: 4</li>
<li>Precision: BF16</li>
<li>Sequence Length: 8192 tokens</li>
</ul>
<h2>Model Capabilities:</h2>
<p>The goal of L3-Aethora-15B v2 is to have an expanded proficiency across a wide spectrum of tasks with a focus in creative writing:</p>
<ul>
<li><strong>Creative Writing and Storytelling:</strong>
<ul>
<li>Generates engaging narratives, poetry, and creative content</li>
<li>Adapts writing style to various genres and tones</li>
<li>Assists in plot development and character creation</li>
</ul>
</li>
<li><strong>General Intelligence:</strong>
<ul>
<li>Engages in detailed discussions on medical topics and scientific concepts</li>
<li>Explains complex scientific phenomena</li>
<li>Assists in literature review and hypothesis generation</li>
</ul>
</li>
<li><strong>Instructional and Educational Content:</strong>
<ul>
<li>Creates comprehensive tutorials and how-to guides</li>
<li>Explains complex topics with clarity and appropriate depth</li>
<li>Generates educational materials for various skill levels</li>
</ul>
</li>
<li><strong>Reasoning and Problem-Solving:</strong>
<ul>
<li>Analyzes complex scenarios and provides logical solutions</li>
<li>Engages in step-by-step problem-solving across various domains</li>
<li>Offers multiple perspectives on challenging issues</li>
</ul>
</li>
<li><strong>Contextual Understanding and Adaptability:</strong>
<ul>
<li>Maintains coherent, context-aware conversations across extended interactions</li>
<li>Adapts communication style based on the user's preferences and needs</li>
<li>Handles nuanced queries with appropriate depth and sensitivity</li>
</ul>
</ul>
<h2>Dataset Creation Process:</h2>
<p>The Aether-Lite-V1.8.1 dataset used for training L3-Aethora-15B v2 underwent a rigorous creation and curation process:</p>
<ol>
<li><strong>Data Collection:</strong> Aggregated from 12 diverse high-quality datasets, including:
<ul>
<li>jondurbin/airoboros-3.2</li>
<li>jtatman/medical-sci-instruct-100k-sharegpt</li>
<li>Doctor-Shotgun/no-robots-sharegpt</li>
<li>QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT</li>
<li>TheSkullery/WizardLM_evol_instruct_v2_Filtered_Fuzzy_Dedup_ShareGPT</li>
<li>TheSkullery/Gryphe-Opus-WritingPrompts-merged</li>
<li>Alignment-Lab-AI/RPGuild-sharegpt-filtered</li>
<li>And others, providing a rich mix of instruction, creative writing, and specialized knowledge</li>
</ul>
</li>
<li><strong>Data Preprocessing:</strong>
<ul>
<li>Language Detection: Utilized a FastText language model to ensure English-language content</li>
<li>Text Sanitization: Cleaned and normalized text, removing or replacing problematic characters</li>
<li>Phrase Filtering: Removed specific unwanted phrases and content types</li>
</ul>
</li>
<li><strong>Deduplication:</strong>
<ul>
<li>Implemented advanced fuzzy deduplication with a 95% similarity threshold</li>
<li>Utilized text embeddings and cosine similarity calculations for efficient comparison</li>
<li>Removed 16,250 duplicate entries, ensuring dataset uniqueness</li>
</ul>
</li>
<li><strong>Data Balancing:</strong>
<ul>
<li>Carefully sampled from each source dataset to maintain diversity</li>
<li>Implemented data shuffling to ensure random distribution of samples</li>
</ul>
</ol>
<p>The final dataset comprises 125,119 high-quality, diverse samples, striking a balance between creativity, practical knowledge, and intellectual depth.</p>
<p>The full dataset used has been released to the public and is avalible for all (see presented section), any ideas or recomendations are always welcome to expand on the dataset further</p>
</div>
</div>
</body>
</html>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ZeusLabs__L3-Aethora-15B-V2)
| Metric |Value|
|-------------------|----:|
|Avg. |24.57|
|IFEval (0-Shot) |72.08|
|BBH (3-Shot) |28.97|
|MATH Lvl 5 (4-Shot)| 7.33|
|GPQA (0-shot) | 5.03|
|MuSR (0-shot) | 6.25|
|MMLU-PRO (5-shot) |27.78|
|