File size: 4,477 Bytes
3893528
 
 
 
 
 
 
 
 
 
1ab401b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3893528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
library_name: transformers
license: llama3
base_model:
- nbeerbower/llama-3-Stheno-Mahou-8B
datasets:
- flammenai/FlameMix-DPO-v1
- flammenai/Grill-preprod-v1_chatML
- flammenai/Grill-preprod-v2_chatML
---
**Exllamav2** quant (**exl2** / **4.0 bpw**) made with ExLlamaV2 v0.0.21

Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-2_2bpw_exl2)**</center> | <center>3250 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-2_5bpw_exl2)**</center> | <center>3479 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-3_0bpw_exl2)**</center> | <center>3893 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-3_5bpw_exl2)**</center> | <center>4311 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-3_75bpw_exl2)**</center> | <center>4518 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-4_0bpw_exl2)**</center> | <center>4727 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-4_25bpw_exl2)**</center> | <center>4935 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-5_0bpw_exl2)**</center> | <center>5557 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-6_0bpw_exl2)**</center> | <center>6496 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-6_5bpw_exl2)**</center> | <center>6902 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/flammenai_Mahou-1.2a-llama3-8B-8_0bpw_exl2)**</center> | <center>8131 MB</center> | <center>8</center> |

![image/png](https://huggingface.co/flammenai/Mahou-1.0-mistral-7B/resolve/main/mahou1.png)

# Mahou-1.2a-llama3-8B

Mahou is our attempt to build a production-ready conversational/roleplay LLM.

Future versions will be released iteratively and finetuned from flammen.ai conversational data.

### Chat Format

This model has been trained to use ChatML format.

```
<|im_start|>system
{{system}}<|im_end|>
<|im_start|>{{char}}
{{message}}<|im_end|>
<|im_start|>{{user}}
{{message}}<|im_end|>
```

# Roleplay Format

- Speech without quotes.
- Actions in `*asterisks*`

```
*leans against wall cooly* so like, i just casted a super strong spell at magician academy today, not gonna lie, felt badass.
```

### ST Settings

1. Use ChatML for the Context Template.
2. Turn on Instruct Mode for ChatML.
3. Use the following stopping strings: `["<", "|", "<|", "\n"]`

### Method

Finetuned using an A100 on Google Colab.

[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)

### Configuration

LoRA, model, and training settings:

```python
# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)

# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False

# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)

# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=2000,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)

# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    force_use_ref_model=True
)

# Fine-tune model with DPO
dpo_trainer.train()
```