--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 base_model: distilbert-base-uncased model-index: - name: emotion_trained_31415 results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - type: f1 value: 0.719757533529152 name: F1 --- # emotion_trained_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9274 - F1: 0.7198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.961635072722524e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.6177 | 0.7137 | | No log | 2.0 | 408 | 0.7489 | 0.6761 | | 0.5082 | 3.0 | 612 | 0.8233 | 0.7283 | | 0.5082 | 4.0 | 816 | 0.9274 | 0.7198 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3