File size: 13,472 Bytes
659b07f 010fe84 bdfbcdc 763ede6 73e02f8 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 b8c2f85 0b4f639 763ede6 b8c2f85 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 b8c2f85 0b4f639 763ede6 0b4f639 763ede6 0b4f639 763ede6 9d87972 0b4f639 9d87972 0b4f639 9d87972 0b4f639 9d87972 659b07f 5577f62 659b07f 7966463 22d515e 2291254 659b07f 6473f34 b1c75c9 6473f34 4bb4aea 659b07f d9afa6e 659b07f b30a21d 659b07f 406d9c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
---
pipeline_tag: sentence-similarity
language:
- de
datasets:
- stsb_multi_mt
tags:
- gBERT-large
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- RAG
- retrieval augmented generation
- STS
- MTEB
- mteb
model-index:
- name: German_Semantic_STS_V2
results:
- dataset:
config: de
name: MTEB AmazonCounterfactualClassification
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: test
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 67.00214132762312
task:
type: Classification
- dataset:
config: de
name: MTEB AmazonCounterfactualClassification
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
split: validation
type: mteb/amazon_counterfactual
metrics:
- type: accuracy
value: 68.43347639484978
task:
type: Classification
- dataset:
config: de
name: MTEB AmazonReviewsClassification
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: test
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 39.092
task:
type: Classification
- dataset:
config: de
name: MTEB AmazonReviewsClassification
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
split: validation
type: mteb/amazon_reviews_multi
metrics:
- type: accuracy
value: 39.146000000000003
task:
type: Classification
- dataset:
config: default
name: MTEB BlurbsClusteringP2P
revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
split: test
type: slvnwhrl/blurbs-clustering-p2p
metrics:
- type: v_measure
value: 38.680981669842135
task:
type: Clustering
- dataset:
config: default
name: MTEB BlurbsClusteringS2S
revision: 22793b6a6465bf00120ad525e38c51210858132c
split: test
type: slvnwhrl/blurbs-clustering-s2s
metrics:
- type: v_measure
value: 17.624489937027504
task:
type: Clustering
- dataset:
config: default
name: MTEB GermanDPR
revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
split: test
type: deepset/germandpr
metrics:
- type: ndcg_at_10
value: 72.921
task:
type: Retrieval
- dataset:
config: default
name: MTEB GermanQuAD-Retrieval
revision: f5c87ae5a2e7a5106606314eef45255f03151bb3
split: test
type: mteb/germanquad-retrieval
metrics:
- type: mrr_at_5
value: 85.316
task:
type: Retrieval
- dataset:
config: default
name: MTEB GermanSTSBenchmark
revision: e36907544d44c3a247898ed81540310442329e20
split: test
type: jinaai/german-STSbenchmark
metrics:
- type: cos_sim_spearman
value: 84.67696933608695
task:
type: STS
- dataset:
config: default
name: MTEB GermanSTSBenchmark
revision: e36907544d44c3a247898ed81540310442329e20
split: validation
type: jinaai/german-STSbenchmark
metrics:
- type: cos_sim_spearman
value: 88.048957974805
task:
type: STS
- dataset:
config: de
name: MTEB MassiveIntentClassification
revision: 4672e20407010da34463acc759c162ca9734bca6
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.25084061869536
task:
type: Classification
- dataset:
config: de
name: MTEB MassiveIntentClassification
revision: 4672e20407010da34463acc759c162ca9734bca6
split: validation
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 66.44859813084113
task:
type: Classification
- dataset:
config: de
name: MTEB MassiveScenarioClassification
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 72.51176866173503
task:
type: Classification
- dataset:
config: de
name: MTEB MassiveScenarioClassification
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: validation
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 72.02164289227742
task:
type: Classification
- dataset:
config: de
name: MTEB MTOPDomainClassification
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: test
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 89.00253592561285
task:
type: Classification
- dataset:
config: de
name: MTEB MTOPDomainClassification
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
split: validation
type: mteb/mtop_domain
metrics:
- type: accuracy
value: 87.70798898071626
task:
type: Classification
- dataset:
config: de
name: MTEB MTOPIntentClassification
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: test
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 70.06198929275853
task:
type: Classification
- dataset:
config: de
name: MTEB MTOPIntentClassification
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
split: validation
type: mteb/mtop_intent
metrics:
- type: accuracy
value: 68.6060606060606
task:
type: Classification
- dataset:
config: de
name: MTEB PawsX
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
split: test
type: google-research-datasets/paws-x
metrics:
- type: ap
value: 57.47670853851811
task:
type: PairClassification
- dataset:
config: de
name: MTEB PawsX
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
split: validation
type: google-research-datasets/paws-x
metrics:
- type: ap
value: 52.85587710877178
task:
type: PairClassification
- dataset:
config: de
name: MTEB STS22
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cos_sim_spearman
value: 50.63839763951755
task:
type: STS
- dataset:
config: default
name: MTEB TenKGnadClusteringP2P
revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
split: test
type: slvnwhrl/tenkgnad-clustering-p2p
metrics:
- type: v_measure
value: 37.996685796529817
task:
type: Clustering
- dataset:
config: default
name: MTEB TenKGnadClusteringS2S
revision: 6cddbe003f12b9b140aec477b583ac4191f01786
split: test
type: slvnwhrl/tenkgnad-clustering-s2s
metrics:
- type: v_measure
value: 23.71145428041516
task:
type: Clustering
- dataset:
config: default
name: MTEB FalseFriendsGermanEnglish
revision: 15d6c030d3336cbb09de97b2cefc46db93262d40
split: test
type: aari1995/false_friends_de_en_mteb
metrics:
- type: ap
value: 71.22096746794873
task:
type: PairClassification
- dataset:
config: default
name: MTEB GermanSTSBenchmark
revision: e36907544d44c3a247898ed81540310442329e20
split: test
type: jinaai/german-STSbenchmark
metrics:
- type: cos_sim_spearman
value: 84.67698604065061
task:
type: STS
- dataset:
config: default
name: MTEB GermanSTSBenchmark
revision: e36907544d44c3a247898ed81540310442329e20
split: validation
type: jinaai/german-STSbenchmark
metrics:
- type: cos_sim_spearman
value: 88.048957974805
task:
type: STS
---
# German_Semantic_STS_V2
**Note:** Check out my new, updated models: [German_Semantic_V3](https://huggingface.co/aari1995/German_Semantic_V3) and [V3b](https://huggingface.co/aari1995/German_Semantic_V3b)!
This model creates german embeddings for semantic use cases.
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Special thanks to [deepset](https://huggingface.co/deepset/) for providing the model gBERT-large and also to [Philip May](https://huggingface.co/philipMay) for the Translation of the dataset and chats about the topic.
Model score after fine-tuning scores best, compared to these models:
| Model Name | Spearman |
|---------------------------------------------------------------|-------------------|
| xlm-r-distilroberta-base-paraphrase-v1 | 0.8079 |
| [xlm-r-100langs-bert-base-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens) | 0.7877 |
| xlm-r-bert-base-nli-stsb-mean-tokens | 0.7877 |
| [roberta-large-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-mean-tokens) | 0.6371 |
| [T-Systems-onsite/<br/>german-roberta-sentence-transformer-v2](https://huggingface.co/T-Systems-onsite/german-roberta-sentence-transformer-v2) | 0.8529 |
| [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) | 0.8355 |
| [T-Systems-onsite/<br/>cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/<br/>cross-en-de-roberta-sentence-transformer) | 0.8550 |
| **aari1995/German_Semantic_STS_V2** | **0.8626** |
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aari1995/German_Semantic_STS_V2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aari1995/German_Semantic_STS_V2')
model = AutoModel.from_pretrained('aari1995/German_Semantic_STS_V2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 1438 with parameters:
```
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters:
```
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
```
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 5e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 576,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
The base model is trained by deepset.
The dataset was published / translated by Philip May.
The model was fine-tuned by Aaron Chibb. |