File size: 13,472 Bytes
659b07f
 
 
 
 
 
 
 
 
 
 
 
010fe84
 
bdfbcdc
 
763ede6
73e02f8
763ede6
 
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
b8c2f85
0b4f639
763ede6
 
 
 
 
 
 
 
 
b8c2f85
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
b8c2f85
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
 
 
 
 
 
 
 
 
0b4f639
763ede6
 
9d87972
 
 
 
 
 
 
 
0b4f639
9d87972
 
 
 
 
 
 
 
 
 
0b4f639
9d87972
 
 
 
 
 
 
 
 
 
0b4f639
9d87972
 
659b07f
 
5577f62
659b07f
7966463
22d515e
2291254
 
659b07f
 
 
 
6473f34
 
b1c75c9
6473f34
 
 
 
 
 
 
 
4bb4aea
659b07f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9afa6e
659b07f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30a21d
 
659b07f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406d9c1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
---
pipeline_tag: sentence-similarity
language:
- de
datasets:
- stsb_multi_mt
tags:
- gBERT-large
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- RAG
- retrieval augmented generation
- STS
- MTEB
- mteb

model-index:
- name: German_Semantic_STS_V2
  results:
  - dataset:
      config: de
      name: MTEB AmazonCounterfactualClassification
      revision: e8379541af4e31359cca9fbcf4b00f2671dba205
      split: test
      type: mteb/amazon_counterfactual
    metrics:
    - type: accuracy
      value: 67.00214132762312
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB AmazonCounterfactualClassification
      revision: e8379541af4e31359cca9fbcf4b00f2671dba205
      split: validation
      type: mteb/amazon_counterfactual
    metrics:
    - type: accuracy
      value: 68.43347639484978
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB AmazonReviewsClassification
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
      split: test
      type: mteb/amazon_reviews_multi
    metrics:
    - type: accuracy
      value: 39.092
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB AmazonReviewsClassification
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
      split: validation
      type: mteb/amazon_reviews_multi
    metrics:
    - type: accuracy
      value: 39.146000000000003
    task:
      type: Classification
  - dataset:
      config: default
      name: MTEB BlurbsClusteringP2P
      revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
      split: test
      type: slvnwhrl/blurbs-clustering-p2p
    metrics:
    - type: v_measure
      value: 38.680981669842135
    task:
      type: Clustering
  - dataset:
      config: default
      name: MTEB BlurbsClusteringS2S
      revision: 22793b6a6465bf00120ad525e38c51210858132c
      split: test
      type: slvnwhrl/blurbs-clustering-s2s
    metrics:
    - type: v_measure
      value: 17.624489937027504
    task:
      type: Clustering
  - dataset:
      config: default
      name: MTEB GermanDPR
      revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
      split: test
      type: deepset/germandpr
    metrics:
    - type: ndcg_at_10
      value: 72.921
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB GermanQuAD-Retrieval
      revision: f5c87ae5a2e7a5106606314eef45255f03151bb3
      split: test
      type: mteb/germanquad-retrieval
    metrics:
    - type: mrr_at_5
      value: 85.316
    task:
      type: Retrieval
  - dataset:
      config: default
      name: MTEB GermanSTSBenchmark
      revision: e36907544d44c3a247898ed81540310442329e20
      split: test
      type: jinaai/german-STSbenchmark
    metrics:
    - type: cos_sim_spearman
      value: 84.67696933608695
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB GermanSTSBenchmark
      revision: e36907544d44c3a247898ed81540310442329e20
      split: validation
      type: jinaai/german-STSbenchmark
    metrics:
    - type: cos_sim_spearman
      value: 88.048957974805
    task:
      type: STS
  - dataset:
      config: de
      name: MTEB MassiveIntentClassification
      revision: 4672e20407010da34463acc759c162ca9734bca6
      split: test
      type: mteb/amazon_massive_intent
    metrics:
    - type: accuracy
      value: 66.25084061869536
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB MassiveIntentClassification
      revision: 4672e20407010da34463acc759c162ca9734bca6
      split: validation
      type: mteb/amazon_massive_intent
    metrics:
    - type: accuracy
      value: 66.44859813084113
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB MassiveScenarioClassification
      revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
      split: test
      type: mteb/amazon_massive_scenario
    metrics:
    - type: accuracy
      value: 72.51176866173503
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB MassiveScenarioClassification
      revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
      split: validation
      type: mteb/amazon_massive_scenario
    metrics:
    - type: accuracy
      value: 72.02164289227742
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB MTOPDomainClassification
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
      split: test
      type: mteb/mtop_domain
    metrics:
    - type: accuracy
      value: 89.00253592561285
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB MTOPDomainClassification
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
      split: validation
      type: mteb/mtop_domain
    metrics:
    - type: accuracy
      value: 87.70798898071626
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB MTOPIntentClassification
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
      split: test
      type: mteb/mtop_intent
    metrics:
    - type: accuracy
      value: 70.06198929275853
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB MTOPIntentClassification
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
      split: validation
      type: mteb/mtop_intent
    metrics:
    - type: accuracy
      value: 68.6060606060606
    task:
      type: Classification
  - dataset:
      config: de
      name: MTEB PawsX
      revision: 8a04d940a42cd40658986fdd8e3da561533a3646
      split: test
      type: google-research-datasets/paws-x
    metrics:
    - type: ap
      value: 57.47670853851811
    task:
      type: PairClassification
  - dataset:
      config: de
      name: MTEB PawsX
      revision: 8a04d940a42cd40658986fdd8e3da561533a3646
      split: validation
      type: google-research-datasets/paws-x
    metrics:
    - type: ap
      value: 52.85587710877178
    task:
      type: PairClassification
  - dataset:
      config: de
      name: MTEB STS22
      revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cos_sim_spearman
      value: 50.63839763951755
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB TenKGnadClusteringP2P
      revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
      split: test
      type: slvnwhrl/tenkgnad-clustering-p2p
    metrics:
    - type: v_measure
      value: 37.996685796529817
    task:
      type: Clustering
  - dataset:
      config: default
      name: MTEB TenKGnadClusteringS2S
      revision: 6cddbe003f12b9b140aec477b583ac4191f01786
      split: test
      type: slvnwhrl/tenkgnad-clustering-s2s
    metrics:
    - type: v_measure
      value: 23.71145428041516
    task:
      type: Clustering
  - dataset:
      config: default
      name: MTEB FalseFriendsGermanEnglish
      revision: 15d6c030d3336cbb09de97b2cefc46db93262d40
      split: test
      type: aari1995/false_friends_de_en_mteb
    metrics:
    - type: ap
      value: 71.22096746794873
    task:
      type: PairClassification
  - dataset:
      config: default
      name: MTEB GermanSTSBenchmark
      revision: e36907544d44c3a247898ed81540310442329e20
      split: test
      type: jinaai/german-STSbenchmark
    metrics:
    - type: cos_sim_spearman
      value: 84.67698604065061
    task:
      type: STS
  - dataset:
      config: default
      name: MTEB GermanSTSBenchmark
      revision: e36907544d44c3a247898ed81540310442329e20
      split: validation
      type: jinaai/german-STSbenchmark
    metrics:
    - type: cos_sim_spearman
      value: 88.048957974805
    task:
      type: STS
---

# German_Semantic_STS_V2

**Note:** Check out my new, updated models: [German_Semantic_V3](https://huggingface.co/aari1995/German_Semantic_V3) and [V3b](https://huggingface.co/aari1995/German_Semantic_V3b)!

This model creates german embeddings for semantic use cases.

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Special thanks to [deepset](https://huggingface.co/deepset/) for providing the model gBERT-large and also to [Philip May](https://huggingface.co/philipMay) for the Translation of the dataset and chats about the topic.

Model score after fine-tuning scores best, compared to these models:

| Model Name                                                    | Spearman |
|---------------------------------------------------------------|-------------------|
| xlm-r-distilroberta-base-paraphrase-v1                        | 0.8079            |
| [xlm-r-100langs-bert-base-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens)                 | 0.7877            |
| xlm-r-bert-base-nli-stsb-mean-tokens                          | 0.7877            |
| [roberta-large-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-mean-tokens)                            | 0.6371            |
| [T-Systems-onsite/<br/>german-roberta-sentence-transformer-v2](https://huggingface.co/T-Systems-onsite/german-roberta-sentence-transformer-v2)       | 0.8529            |
| [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) | 0.8355 |
| [T-Systems-onsite/<br/>cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/<br/>cross-en-de-roberta-sentence-transformer) | 0.8550        |
| **aari1995/German_Semantic_STS_V2** | **0.8626**        |



<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('aari1995/German_Semantic_STS_V2')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aari1995/German_Semantic_STS_V2')
model = AutoModel.from_pretrained('aari1995/German_Semantic_STS_V2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 1438 with parameters:
```
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters:
  ```
  {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 4,
    "evaluation_steps": 500,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 5e-06
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 576,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->
The base model is trained by deepset.
The dataset was published / translated by Philip May.
The model was fine-tuned by Aaron Chibb.