---
pipeline_tag: sentence-similarity
language:
- de
datasets:
- stsb_multi_mt
tags:
- gBERT-large
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- RAG
- retrieval augmented generation
- STS
- MTEB
---
# German_Semantic_STS_V2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Special thanks to [deepset](https://huggingface.co/deepset/) for providing the model gBERT-large and also to [Philip May](https://huggingface.co/philipMay) for the Translation of the dataset and chats about the topic.
Model score after fine-tuning scores best, compared to these models:
| Model Name | Spearman |
|---------------------------------------------------------------|-------------------|
| xlm-r-distilroberta-base-paraphrase-v1 | 0.8079 |
| [xlm-r-100langs-bert-base-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens) | 0.7877 |
| xlm-r-bert-base-nli-stsb-mean-tokens | 0.7877 |
| [roberta-large-nli-stsb-mean-tokens](https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-mean-tokens) | 0.6371 |
| [T-Systems-onsite/
german-roberta-sentence-transformer-v2](https://huggingface.co/T-Systems-onsite/german-roberta-sentence-transformer-v2) | 0.8529 |
| [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) | 0.8355 |
| [T-Systems-onsite/
cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/
cross-en-de-roberta-sentence-transformer) | 0.8550 |
| **aari1995/German_Semantic_STS_V2** | **0.8626** |
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aari1995/German_Semantic_STS_V2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aari1995/German_Semantic_STS_V2')
model = AutoModel.from_pretrained('aari1995/German_Semantic_STS_V2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 1438 with parameters:
```
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters:
```
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
```
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "",
"optimizer_params": {
"lr": 5e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 576,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
The base model is trained by deepset.
The dataset was published / translated by Philip May.
The model was fine-tuned by Aaron Chibb.