File size: 7,167 Bytes
7ed3e32
7701f9c
3e6ab91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ed3e32
 
 
 
7b74a95
 
 
d136d4b
 
 
 
 
 
 
 
 
 
 
 
 
a2a3c23
 
 
 
 
6a47685
 
 
 
8dbd998
 
 
 
d136d4b
 
 
 
 
 
 
34d54c6
d136d4b
 
 
 
 
3e6ab91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
license: apache-2.0
base_model: jondurbin/bagel-34b-v0.2
model-index:
- name: Smaug-34B-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 72.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 65.79
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 53.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 91.87
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 80.86
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 80.52
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 69.63
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 72.58
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 68.23
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
      name: Open Portuguese LLM Leaderboard
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/e4u8VYfDBh11u60rFYJHF.png)

This model is a finetune of jondurbin's excellent [bagel](https://huggingface.co/jondurbin/bagel-34b-v0.2) model. This model has not utilised any form of merging.

We created Smaug-34B-v0.1 using a new fine-tuning technique, DPO-Positive (DPOP), and new pairwise preference versions of ARC, HellaSwag, and MetaMath (as well as other existing datasets). 
We introduce the technique and the full training details in our new paper: https://arxiv.org/abs/2402.13228.

We show that on datasets in which the edit distance between pairs of completions is low (such as in math-based datasets), standard DPO loss can lead to a reduction of the model's 
likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. 
Using these insights, we design DPOP, a new loss function and training procedure which avoids this failure mode. 
Surprisingly, we also find that DPOP outperforms DPO across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions.

We believe this new approach is generally useful in training across a wide range of model types and downstream use cases, and it powers all of our Smaug models.
With the release of our paper and datasets, we are excited for the open source community to continue to build on and improve Smaug and spawn more dragons to dominate the LLM space!


### Evaluation Results

| Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| --- | --- | --- | --- | --- | --- | --- |
|  77.29  | 74.23 | 86.76  | 76.66 | 70.22 | 83.66 | 72.18 |

### Contamination Results

With reference model jondurbin/bagel-34b-v0.2:

| ARC | TruthfulQA | GSM8K |
| --- | --- | --- |
| 0.08| 0.38| 0.88|

### Citation

Please cite the paper if you use data, model, or method in this repo.

```
@article{pal2024smaug,
  title={Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive},
  author={Pal, Arka and Karkhanis, Deep and Dooley, Samuel and Roberts, Manley and Naidu, Siddartha and White, Colin},
  journal={arXiv preprint arXiv:2402.13228},
  year={2024}
}
```


# Open Portuguese LLM Leaderboard Evaluation Results  

Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/abacusai/Smaug-34B-v0.1) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          |  Value  |
|--------------------------|---------|
|Average                   |**72.88**|
|ENEM Challenge (No Images)|    72.43|
|BLUEX (No Images)         |    65.79|
|OAB Exams                 |    53.99|
|Assin2 RTE                |    91.87|
|Assin2 STS                |    80.86|
|FaQuAD NLI                |    80.52|
|HateBR Binary             |    69.63|
|PT Hate Speech Binary     |    72.58|
|tweetSentBR               |    68.23|