File size: 7,167 Bytes
7ed3e32 7701f9c 3e6ab91 7ed3e32 7b74a95 d136d4b a2a3c23 6a47685 8dbd998 d136d4b 34d54c6 d136d4b 3e6ab91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
license: apache-2.0
base_model: jondurbin/bagel-34b-v0.2
model-index:
- name: Smaug-34B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 72.43
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 65.79
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 53.99
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 91.87
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 80.86
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 80.52
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 69.63
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 72.58
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 68.23
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-34B-v0.1
name: Open Portuguese LLM Leaderboard
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/e4u8VYfDBh11u60rFYJHF.png)
This model is a finetune of jondurbin's excellent [bagel](https://huggingface.co/jondurbin/bagel-34b-v0.2) model. This model has not utilised any form of merging.
We created Smaug-34B-v0.1 using a new fine-tuning technique, DPO-Positive (DPOP), and new pairwise preference versions of ARC, HellaSwag, and MetaMath (as well as other existing datasets).
We introduce the technique and the full training details in our new paper: https://arxiv.org/abs/2402.13228.
We show that on datasets in which the edit distance between pairs of completions is low (such as in math-based datasets), standard DPO loss can lead to a reduction of the model's
likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases.
Using these insights, we design DPOP, a new loss function and training procedure which avoids this failure mode.
Surprisingly, we also find that DPOP outperforms DPO across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions.
We believe this new approach is generally useful in training across a wide range of model types and downstream use cases, and it powers all of our Smaug models.
With the release of our paper and datasets, we are excited for the open source community to continue to build on and improve Smaug and spawn more dragons to dominate the LLM space!
### Evaluation Results
| Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| --- | --- | --- | --- | --- | --- | --- |
| 77.29 | 74.23 | 86.76 | 76.66 | 70.22 | 83.66 | 72.18 |
### Contamination Results
With reference model jondurbin/bagel-34b-v0.2:
| ARC | TruthfulQA | GSM8K |
| --- | --- | --- |
| 0.08| 0.38| 0.88|
### Citation
Please cite the paper if you use data, model, or method in this repo.
```
@article{pal2024smaug,
title={Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive},
author={Pal, Arka and Karkhanis, Deep and Dooley, Samuel and Roberts, Manley and Naidu, Siddartha and White, Colin},
journal={arXiv preprint arXiv:2402.13228},
year={2024}
}
```
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/abacusai/Smaug-34B-v0.1) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**72.88**|
|ENEM Challenge (No Images)| 72.43|
|BLUEX (No Images) | 65.79|
|OAB Exams | 53.99|
|Assin2 RTE | 91.87|
|Assin2 STS | 80.86|
|FaQuAD NLI | 80.52|
|HateBR Binary | 69.63|
|PT Hate Speech Binary | 72.58|
|tweetSentBR | 68.23|
|